

Integrating geothermal energy into the portfolio of an industrial plant

Economic and organisational aspects

04.10.2023 Niels Giroud

Thermique en chiffres

Objective 2 = 75% of thermal energy needs covered by carbon neutral DH

Objective 1 = 40% decrease of energy demand from buildings

Extension of DH Networks by 2050

What is GEOOL?

A company set up to develop geothermal energy exploitation in western Lausanne

Partners:

Mutualisation of competences and financial risks

GEOOL & SIL – Surface Exploration Licences

SERVICES INDIGITRES LAUSAVINE

Stakeholders

Environnement

- Hydrogeology
- Forests
- Soil protection
- Land use and planning

• .

4 Municipalities:

Renens, Chavannesprès-Renens, Crissier, Ecublens

City council

Municipal Board

Géothermie de l'Ouest lausannois

✓IX

SIX Swiss Exchange

ROMANDE

Schweizerische Eidgenossenschaft
Confederation suisse
Confederazione Svizzera
Confederaziun svizra
Bundesamt für Energie BFE
Office fédéral de l'énergie OFEN

Subsidy up to 60% of project costs

agepp geothernal power production

Infrastructures

- SiL
- Municipalities
- Public transport (CFF, TL)

Heat distribution

CAD SIL CADOUEST ECUCAD CRICAD EFPL

Communication

- Media
 - Population
- Neighbors

Municipalities

Land owners

Project Team

15 specialists from 8 different contractors

Business model: Prospection strategy

- Probability of success (POS) of a first well based on 2D seismics < 30 %
- POS can be increased by combining 3D seismics and several exploration BH Strategy for GEOOL:
- 2 unsuccessful exploration boreholes included in the business model
 - ▶ 1st exploration BH includes sub-vertical pilot hole and sidetrack into target
 - ▶ 2nd & 3rd BH deviated into potentially producing targets

Probability of success (POS)

27 %

POS heat production:

As calculated for GEOOL's current prospection strategy Only orders of magnitudes are relevant

The primary objective of the first borehole is derisking of the project

84%

63 %

Business model – Production Base case

- If temperature permits: direct use
- In any case: heat pumps to lower injection temperature

Energy output

- $\Delta T = 54 \, ^{\circ}C$
- 7.53 MW x 6000 hours = 45.2 GWh

Electricity costs

4.5 GWh @ CHF 0.18 = 1.175 MCHF

Investment and return

Status March 2023

Total investment

SFOE Subsidy

Net investment

Minimum IRR for sharel	nolders
 Selling price is competitive compared to other renewables 	
 Selling price has the highest influence on the IRR 	

☐ small variations can cover most uncertainties in model assumptions

90 MCHF

32 MCHF

57 MCHF

- Selling price of kWh_{thermal}: CHF 0.12
- Amortisation: 40 years
- Return on investment: 25 years
- s: 4.8%

Sensitivity analysis – Variation from the base case

Challenges and Summary

- Geological uncertainties
 - Complex planning of DH-networks
 - Only sufficient data acquisition leads to acceptable POS
- SFOE subsidies limited to direct use
- Important CAPEX, but limited sensitivity on financial return
- Communication
- Largest effect on financial return:
 - → Production flowrate
 - → Annual production time
 - → Selling price

Thank you for your attention

