Cambridge Carbon Capture Ltd

CO$_2$LOC - A Circular Economy Solution to Climate Change

Michael Evans
CEO
Most CCUS Technologies Add Cost

- Carbon Capture and Storage (CCS)
 - Need expensive infrastructure
 - Energy intensive.
 - No commercial benefit.

- Carbon Capture and Use (CCU)
 - Revenues from sale of by-products offset some of the cost of capture.
 - Products can displace carbon intensive alternatives offering further CO₂ savings.
 - Restricted by size of markets for by-products.
 - Some applications are not permanent sequestration solutions.
CO₂LOC Process & Economics (per tonne of CO₂ captured)

Stage 1
- Fossil Fuel Source
- Olivine/Serpentine Mined & Converted to Mg(OH)₂

Stage 2
- Fossil Fuel & Mg(OH)₂ Supply Infrastructure
- CO₂ Emissions Source with CCM
- Building materials offsetting CO₂ intensive alternatives

- €133
- €19
- €205
- €12
- €133
- €35
- €192

Gross Revenue of €438 per tonne of CO₂ captured, leaving NET profits of €200 after OPEX and amortised CAPEX.
Supply Chain & Drivers

- Full scale deployment of CO$_2$LOC technology will require a significant supply chain.
- Large drivers to adopt our technology exist in all sectors of the supply chain.

Mining Sector
- Mg/Si Feedstock

CO$_2$ Emitters
- Achieving Net Zero:
 - Government legislation
 - Investor pressure
 - Customer pressure

Construction Materials
- Achieving Net Zero:
 - Reduction of operational emissions
 - Reductions of embedded CO$_2$

Commercial:
- Need to stay competitive
- Short time to make changes

Investor issues:
- Mining tailings liabilities
- Climate smart mining

IT, EVs and Renewables place increasing demand for mined products.