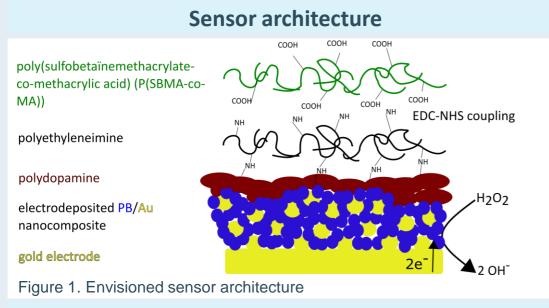
KU LEUVEN

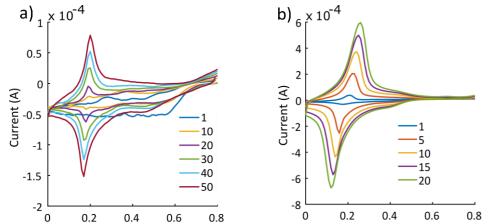
Enzyme-free antifouling hydrogen peroxide biosensor for lab-on-chip and implant applications

Jolan Wellens¹, Olivier Deschaume¹, Stijn Jooken¹, Tristan Putzeys^{1,2}, Nicolas Verhaert^{2,3} and Carmen Bartic¹ ¹ Soft-Matter Physics and Biophysics Unit, Department of Physics and Astronomy, Celestijnenlaan 200 D, 3001 Leuven; Jolan.Wellens@kuleuven.be


- ² Experimental Oto-rhino-laryngology, Group, Department of Neurosciences, ON 2 Herestraat 49, 3000 Leuven
- ³ University Hospitals Leuven, Department of Otorhinolaryngology, Head and Neck Surgery Leuven, Belgium

Abstract

Stability and sensitivity


Hydrogen peroxide (H_2O_2) is an important signaling molecule in biological organisms since it is a side product of various enzymatic reactions and a marker for local inflammation [1]. Many electrochemical sensors have been developed to monitor H₂O₂ in vitro and in vivo but their long-term use in contact with cells and tissues is limited due to sensor biofouling and degradation of the biorecognition layer (often based on peroxidases) [2].

In this work we attempted to replace biological peroxidases by an electrodeposited nanocomposite of Prussian blue (PB) and gold (Au) nanoparticles that act as a H_2O_2 catalyst [3]. The nanocomposite was coated with polydopamine (PDA) in order to increase its stability and the sensitivity towards H_2O_2 was verified. Lastly, we show that the PDA layers can be easily modified with sulfobetaine methacrylate and methacrylic acid copolymer that demonstrates excellent antifouling behavior in vitro.

Electrodeposition and morphology

PB/Au layers are electrodeposited more slowly, are smoother and consist of smaller particles than PB layers.

PDA coating increases overall stability: PB/PDA has 98.5 % current retention after 50 cycles vs 91.5 % after 10 cycles for PB (cycling in pH 7 phosphate buffer, 0.1 M KCL). PB/Au/PDA layers have a higher sensitivity and stability in PBS compared to PB/PDA layers.

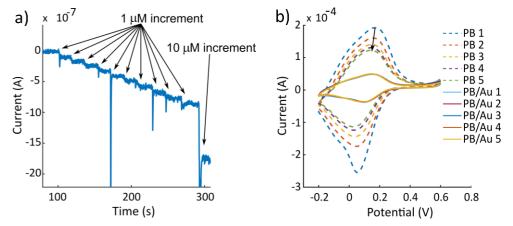


Figure 4. a) Successive additions of H_2O_2 for a PB/Au/PDA layer in PBS. Current was measured at 0 V vs Ag/AgCI. A sensitivity of 670 vs 357 nA μ M⁻¹ cm⁻² for PB/PDA layer was found with an LOD of 0.58 μ M vs 1.23 Stability μ**M**. b) of PB/Au/PDA PB/PDA VS in PBS. Decrease in peak current indicates degradation.

Antifouling

Conjugating P(SBMA-co-MA) to PDA layer inhibits protein and fibroblast adhesion (for more than 9 days) in vitro.

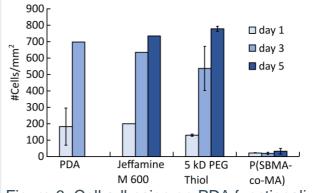
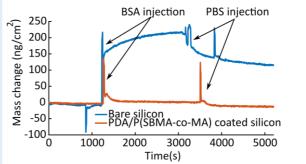



Figure 6. Cell adhesion on PDA functionalized with various antifouling molecules.

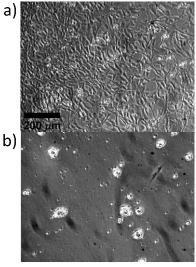


Figure 8. a) Confluent fibroblasts on a bare silica surface (4 days after seeding). b) Few fibroblast clusters on a PDA/P(SBMA-co-MA)

Potential (V)

Potential (V)

Figure 2. Electrodeposition of a) PB/Au and b) PB layers by cycling between 0 and 0.8 V from a solution containing $K_3Fe(CN_6)$, FeCl₃ and for PB/Au also AuCl₃. Steady growth of the PB redox peak at 0.2 V indicates layer growth. Electrode diameter is 4 mm² and numbers indicate cycles.

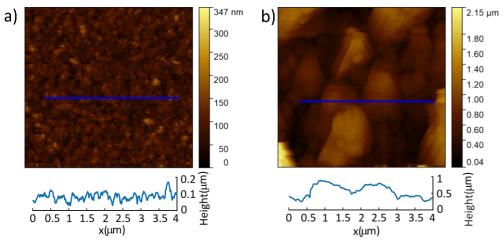


Figure 3. AFM scans of a) PB/Au and b) PB layers showing morphology. PB shows µ-sized particles and PB/Au layer consists of <100 nm particles.

Figure 7. Adhesion of Bovine serum albumin (BSA) measured by QCM.

coated surface (9 days after seeding).

Conclusion

The electrodeposited PB/Au has better sensitivity and stability than PB layers. Coating with polydopamine increases stability and allows for functionalization with antifouling polymers. Amongst these, P(SBMA-co-MA) has shown significant improvement over commonly used PEG brushes and inhibits fibroblast adhesion for more than 9 days.

References

[1] W. Chen et al. Analyst, 2012,137, 49-58 [2] G. Rong et al. ACS Sens. 2017, 2, 3, 327–338 [3] W. Wang et al. Analyst, 2014,139, 2904-2911

Acknowledgements

This research was funded by FWO (research grant G088619N).