BIOMED

BIOMEDISCH
ONDERZOEKSINSTITUUT
\square UHASSELT

Figure 8. Geometric method to construct the radii of a
given curve by the perpendicular bisectors of the
 7. Superimposed grid reveals asymmetries chords [after (9)]. From their points of intersection,
of the condyles (see also Figs. 2,3 \& 5). shorter radii correspond with a more convex curvature. RESULTS (1)

 phalanx amounts about 5 squares, the curvature of the radial condyle about 4 squares. The same applies to the mating articular curvatures at the head of the first phalanx.

 Figure 5. The resulting HR-MRI slice Figure 6. Main structures of Fig. 5, tal (coronal) plane. indicated by colour code. RESEARCH QUESTIONS, MATERIAL AND METHODS
As (4) rightly states, "the asymmetry of the condylar surfaces in the anteroposterior plane would require a profile projector to be analysed more accurately")
Therefore, by using such profiles in the frontal ($=$ coronal) plane, as presented in the HR-MRI frame (Fig. 5), we first wished to quantify the asymetries of the

gure 9 b. As in Fig. 9 a - but here with respect to the pair of radial condyles.

Figure 10. Both geometric constructions combined in one frate

RESULTS (2)
The two pairs of curvatures of the articular surfaces were anallysed separately. In Fig. 9 a, the chords of the u Inar curvatures are plotted on the HR-MRI-sice, resulting in the
inscribed open polvan C. J for the curvature of the articular surface of the first phalann. A comparable graphical construction gave the inscribed open

 Fig. 10 shows. both graphical constructions combined in one frame, at the same scale. Set of intersection points of first phalanx circled in red, of second phalanx in ineen Fig. 10 shows both graphical constructions combined in one frame, at the same scale. Set of intersection points of first phalanx circled in red, of second phalanx in green.
For the radial articular curvatures, red and green areas partly overlap. For the ulnar curvatures, red and green areas are separate, green areas corresponding with longer radii It means, that the convexity of the proximal radial condyle here corresponds with its mating concavity of the distal radial condyle, so: at the radial side they are fairly congruent.
At ulnar side however, the articular curvature of the proximal condyle shows stronger convexity, compared with its mating concavity of the distal condyle. They are incongruent.

 were also quantified, namely
condyles have a maller syno

REFERENCES
Van Zwieten K. J., Schmidt K. .P., Adriaensens P., De Munter S., Kosten L.,."Piskun O. E., Varzin S. A. (2020) Asymmetries and incongruences of articular surfaces of
P.IP.- joint in normal human finger, in: Health the base of Human Potential: Problems and ways to solve them, ISSN 2076-4618, $720-732$. Figures used by permission Landsmeer J. M. F. (1976) Atlas of Anatomy of the Hand. Edinburgh, London, New York: Churchill Livingstone. Artist's impression, inspired by its Fig. 9.6 b, on p. 319 . Abaci T., Mortara M., Patane G., Spagnulo M., Vexo F., Thalmann D.,., Bridging Geometry and Semantics for Object Manipulation and Grasping (2005)
Proceedings of Workshop towards Semantic Virtual Environments (SVE 2005). University of Geneva, Villars, Svitzerland, 110-119.
4. Dubousset J. F. (1980) Les phénomènes de rotation axiale lors de la prise au niveau des doigts. (The phenomena of axial rotation when gripping at the level
5. Degeorges R., Laporte S., Pessis E., Mitton D., Goubier J. N., Lavaste, F. (2004) Rotations of three joint fingers: a radiological study. Surgical and Radiologic Anatomy,
$26,392-398$.
6. Dumont C., Abus G. Kubein-Meesenburg D., Fanghänel J., Stürmer K. M., Nägerl H. (2008) Morphology of the interphalangeal joint surface and its functional
relevance. Journal of Hand Surgery, 33 A, , 9 -18.,
7. Schindele S. (2019) Gelenkersatz am Fingermittelgelenk (Arthroplasty at the proximal interphalangeal joint). Orthopäde, 48, 5, 378-385.
8. hitp://www.timgagnon.com/grid/ Accessed on January 30,2021
9. Schmidt I. R. (1837) Beginselen der Differentiaal en Integraal Rekening (The Principles of the Differential and Integral Calculus), 2nd Edition. 's-Gravenhage,
Amsterdam, The Netherlands, Uitgeverij De Gebroeders Van Cleef, p. 211 ; PI. III, Fig. 26.
10. https:///www.geogebra.ora/geometry/ Accessed on January 30, 2021

1. Koo S., Andriacchi T. P. (2008) The knee joint center of rotation is predominantly on the lateral side during normal walking. Journal of Biomechanics, 41, 6, 1269-1273.
