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Retinal blood vessel segmentation using fully convolutional network with

transfer learning
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Retinal blood vessel segmentation using fully convolutional network with

transfer learning
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• Computed Tomography (CT) is helpful in reducing the lung cancer
– High sensitivity to detect lung nodule

– Easy to locate lung nodule

• Different types of nodules have similar visual representation

Lung Nodule Classification on Computed Tomography

According to seminal National Lung Screening Tail, 
screening CT scan reduce lung cancer death in 20%, but 
96.4% of nodule findings showed a false positive

Benign nodule Malignant nodule
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• CTLungNet

– 3 Conv layers and 2 FC layers

– 10-times-faster processing 
time (0.90 sec/slice) compared 
to AlexNet (8.79 sec/slice)

– 180-times-reduced number of 
learnable parameters (0.34 
million) compared to AlexNet 
(61 million) 

Deep Learning for Classification of Small (≤ 2 cm) pulmonary nodules on CT Imaging

K. Chae, G. Jin, S. Ko, Y. Wang, H. Zhang, E. Choi, H. Choi, 2020. “Deep Learning for Classification of A Small (≤2cm) Pulmonary Nodule on CT Imaging: A 

Preliminary Study,” accepted to Elsevier Academic Radiology, Vol. 27, Iss. 4, e55-e63.
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• CTLungNet showed higher AUC value (0.85 vs 0.82) in ROC curves.

• CTLungNet, as a second reviewer, significantly improved performances of 
radiologists with less experiences (e.g., two students and physicians).

Comparison with AlexNet and Human Reviewers
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• Multi-path feature extraction

– Concatenating feature maps of 
different levels of layers

– Combine more robust features with 
respect to fine global (e.g., contour of 
nodule) and sparse local (e.g., unique 
pattern) structures

• Multi-scale convolutional layer
– Convolving with three filters with 

different scales

– Extract more local sparse structures 
with respect to different sizes

Novel Convolutional Neural Network Architecture for Improved Pulmonary Nodule 
Classification on CT
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Method Accuracy (%) Sensitivity Specificity AUC

Li et al. [1] CNN with 1 single-scale 
convolutional layer

80.15 0.789 0.818 0.854

Zhao et al. [2] CNN with 2 single-scale
convolutional layers

84.97 0.843 0.858 0.902

Tajbakhsh et al. [3] Transfer learning on
pre-trained AlexNet

80.58 0.821 0.787 0.855

Shin et al. [4] Transfer learning on
pre-trained GoogLeNet

86.68 0.906 0.798 0.933

Shen et al. [5] Multi-cropped CNN 86.77 0.846 0.895 0.940

Proposed Method Multi-scale + multi-path 90.38 0.887 0.924 0.948

Comparison with Pervious Works

• All CNNs were trained and evaluated under LUNGx Challenger database [6] with 5 
folder cross-validation.

Y. Wang, H. Zhang, K. Chae, Y. Choi, G. Jin, and S. Ko, 2020. “Novel convolutional neural network architecture for improved pulmonary nodule classification on computed 

tomography,” accepted to Springer Multidimensional Systems and Signal Processing, Vol. 31, pp. 1163-1183.
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References:



Deep Learning for Ultrasound Imaging

15

• Automated breast ultrasound (ABUS) is nonradioactive and used as a supplemental 
screening for breast lesion detection.
– Compared with mammography, screening ABUS still takes a significantly longer time. 

Breast Lesion Classification on Automated Breast Ultrasound

Example of ABUS image for screening in 50-year-old woman. 
A benign nodule is located in both coronal and transverse 
views and enclosed by red rectangular boxes. 

Y. Wang, E. Choi, H. Zhang, G. Jin and S. Ko, 2020. “Breast cancer classification in automated breast ultrasound using multi-view CNN with transfer learning,” Elsevier 

Ultrasound in Medicine & Biology, Vol. 46, Iss. 5, pp. 1119-1132.
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• Inception-v3
– Widely used for natural image 

classification task

– Achieved 78.1% accuracy on 
ImageNet

• Transfer learning on Inception-v3
– Without design CNN architecture

• More complex hyper-parameters 
tuning

• Trial-and-error to determine 
number of layers

– Inherit feature extraction power 
from natural images to medical 
imaging

Transfer learning on Inception v-3
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• Multi-view strategy A

– Concatenating different views of 
lesion patches

– Use single Inception-v3 for feature 
extraction

• Multi-view strategy B

– Dual paths feature extractions

– Concatenating extracted features by 
Fully-connected layer

Breast Cancer Classification in ABUS using Multi-view CNN with Transfer Learning
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Comparison with other CNN architectures

Method
Sensitivity Specificity AUC

View strategy Backbone

Coronal view Inception-v3 0.831 0.800 0.891

Transverse view Inception-v3 0.843 0.844 0.953

Multi-view strategy A

ResNet-50 0.809 0.830 0.928

Inception-ResNet-v2 0.870 0.875 0.976

Inception-v3 0.885 0.889 0.982

Multi-view strategy B Inception-v3 0.853 0.867 0.959
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• Micro-CT is a most advanced modality used by dentists 
to diagnose carries. 
• Provides a 3D view of the entire teeth.

• Improved carries detection rate compared to X-ray. 

• Problem: screening on Micro-CT is still a time-
consuming time due to each Micro-CT Scan produces 
hundreds of slice images. 

• Solution: A CNN-based CADx system is developed to 
classify slice images of a Micro-CT scan into normal 
(Without carries) or abnormal (Contains carries). 

CNN-based Carries Identification on Micro-CT Image

Illustration of Micro-CT slice image. Red 
arrow indicates a caries. 
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• One Micro-CT cases was collected from department of health science at University of 
Saskatchewan:
• Consists of 590 micro-CT slice image.

• Two carries were identified in 40 of the 590 slice images.

• Transfer learning is applied to train three different CNN architectures:
• Inceptionv3

• DenseNet

• ResNet

• ResNet achieved the best classification performance compared to other two. 

Preliminary Results

Sensitivity Specificity

ResNet backbone 80.00% (8/10) 88.98% (105/118)



Deep Learning on Anterior Mediastinal Lesion Diagnosis

• A common disease in the chest.

• CT is widely used in the diagnosis of 
mediastinal diseases. 

• Problem: difficult to distinguish lesions in CT 
images because of image artifact, intensity 
inhomogeneity, and their similarity with other 
tissues. 

• Solution: segmented lesion can provide 
radiologists a method to better subtract the 
features of the lesions, thereby improving the 
accuracy of diagnosis. 

Anterior Mediastinal Lesion



Deep Learning on Anterior Mediastinal Lesion Diagnosis

• A total of 185 CT scans was collected from JBNU hospital. 

• A CNN-based architecture is developed to segment lesion 
from CT imaging.
• Multi-feature learning via ResNet and vision transformer.

• Preliminary Results:

Novel CNN for Mediastinal Lesion Segmentation

ResNet 
Backbone

Dilated 
Convolution 

layer

Vision 
Transformer

CT Slice image

Feature Concatenation

Upsampling

Predicted Mask

Dice coefficient Sensitivity Specificity

3D-ResUNet [1] 87.73% N/A N/A

Proposed Model 85.41% 0.854 0.8523

[1] Huang, S., Han, X., Fan, J., Chen, J., Du, L., Gao, W., Liu, B., Chen, Y., Liu, X., Wang, Y., Ai, D., Ma, 

G., & Yang, J. (2021). Anterior Mediastinal Lesion Segmentation Based on Two-Stage 3D ResUNet With 

Attention Gates and Lung Segmentation. Frontiers in Oncology, 10.
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• AS is an arthritis that affects the spine, and sacroiliac (SI) 
joints in the pelvic region.

• Not well known outside MSK radiologists and has an 
average diagnostic delay of 7-10 years.
– Continued patient suffering

– Strain on healthcare system, 12k (adjusted for inflation, 2006 to 
2022) per year [6]

• Visualized in the sacroiliac joints (SIJs).

• Would be useful to have a diagnostic model.

What is Ankylosing Spondylitis (AS)?

Disease Progression:
Modified from 

https://www.faceyourbackpain.com/ankyl

osing-spondylitis
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From an abdominal/pelvic CT scan (left), can erosion be differentiated from a control 
patient?

Erosion: Early AS Symptom

Young Control Patient

Old Control Patient
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Differentiation and therefore diagnosis is possible with machine learning!

The ROC of Random Forest (10 decision trees) machine learning classifiers trained on 
GLCM and LBP texture features (8 features in total, 4 from each), 8-fold cross validation:

Erosion vs. Young Control
96.0% accuracy, 92.9% sensitivity

Erosion vs. Old Control
82.4% accuracy, 80.6% sensitivity
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Differentiation and therefore diagnosis is even better with deep learning!

The ROC of a deep learning classifier trained via transfer learning on Inception-V3, 8-
fold cross validation:

Erosion vs. ALL Control
99.0% accuracy, 97.5% sensitivity

Inception-V3 Backbone
Input size: 160×75×3

Global Avg. Pool
Input size: 8×8×2048

Dropout, 0.5
Input size: 1×1×2048

FC, 1024

ReLU

FC (sigmoid), 2



Machine and Deep Learning for Early Detection of
Ankylosing Spondylitis (AS) using CT

27

Comparison of AS detection against similar 
work 

([1,2] use a dataset comprised of MR imagery)

2

1

2

[3]:

Castro-Zunti, R., Park, E., Younhee, C., Jin, G., and Ko, S. "Early detection of 
ankylosing spondylitis using texture features and statistical machine 
learning, and deep learning, considering patient age." Computerized 
Medical Imaging and Graphics. 82. (2020). p. 101718



What about a custom deep learning architecture to lower computational cost?
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Input size: 75×125 ×3First 3 layers of Inception-V3 trained on ImageNet

Dropout, 0.25
Stride 2 Conv, k=3, 24f

Dropout, 0.25
Conv, k=3, 32f

Conv+ReLU, k=3, 48f
Dropout, 0.25

Stride 2 Conv, k=3, 64f
Dropout, 0.25
Conv, k=3, 64f
Dropout, 0.5

Conv+ReLU, k=1, 32f

Conv+ReLU, k=7, 32f
Stride 2 Conv, k=3, 32f
Conv+ReLU, k=5, 32f

Stride 2 Conv, k=3, 32f
Dropout, 0.5

Conv+ReLU, k=3, 16f

Concatenate+

Stride 8 Conv, 
k=3, 64f

Concatenate

Conv+ReLU, k=1, 32f

FC (sigmoid), 2
Dropout, 0.5

FC, 128

Conv, k=1, 64f
Global Avg. Pool

Conv+ReLU, k=1, 64f
Output size: 2×1 ×128

Output size: 2×1 ×64

Output size: 1 ×1 ×64

Output size: 1 ×1 ×128

Output size: 2×1 ×64

Output size: 1 ×1 ×2

1736 SI joint image 
crops in dataset

75% Training, 
12.5% Validation, 

12.5% Testing

Path of bigger kernels;
captures larger details

Concatenation of addition 
of information straight 
from Inception model; 
improves sensitivity 
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Erosion vs. ALL Control
98.7% accuracy, 97.4% sensitivity

Erosion vs. ALL Control
98.4% accuracy, 95.7% sensitivity

What about a custom deep learning architecture to lower computational cost? It 
doesn’t do that bad against fine-tuning on a vanilla InceptionV3 model despite using 
93.7% less parameters. 

Our Custom Model Fine-Tuned InceptionV3
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• AS diagnostics commonly done using MR because 
CT has radiation, which is unsafe for patients [7].

• MR can also image the very earliest symptoms 
(inflammation) before radiographic changes (i.e. 
erosion) [8]. 

• However, CT tends to outperform MR for AS 
diagnoses [7] due to the inflammation also being 
prevalent in control populations [9].

• Sought to develop a general AS diagnostics system 
using conventional MR as an input. Showed that 
combining 3 types (T1wTSE, T2wFS, and T2wPCFS) 
as RGB is better than any single type alone for 
classification.

AS Diagnostic System

Different MR imaging sequences (a-c) 

and their combined (RGB) image (d). 

SIJs' bounding boxes are shown in white. 
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• We fine-tuned a YOLOv5 Medium 
object detection network using the 
combined imagery.

• 835 radiologist-annotated frames from 
38 patients (18 AS and 20 control). 

• Per-patient-based (i.e. the patients in 
the train, validate, and test folds were 
disjoint) 6-fold cross validation F1-score 
of 99.9% and mAP@0.5 of 99.5%.

SIJ Detection
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• We fine-tuned a variety of InceptionV3, 
ResNet50, and VGG16-based 
convolutional neural networks (CNNs).

• Same dataset as for detection. 531 AS 
and 606 control SI joints.

• Best was an ensemble of VGG16 
networks trained with global average 
pooling.

• Per-patient Accuracy of 89.5%, 
Specificity of 95%, Sensitivity of 83.3%, 
ROC AUC of 89.2%.
– Specificity especially interesting considering 

issue with inflammation in control patients. 

SIJ AS vs. Normal Classification



Ankylosing Spondylitis Classification from MR

33

• Outperformed a 10-yr experienced radiologist by 13.13% accuracy, 11.11% sensitivity, 
15.00% specificity, and 13.06% ROC AUC. (Not statistically significant though.) 

• Additionally, reimplemented related work using the dataset and showed ours to be 
superior:

– Meets or exceeds truth-related metrics.

– Likely faster than the MLP if a GPU is used for the CNN, considering the MLP requires generating 158 
features, which would take non-negligible time.

SIJ AS vs. Normal Classification: Comparisons

                                        

                                   

                                       

                    

                                 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

            

[3]

Our retrained CT AS classifier model
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Full System Architecture
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• Adapting our network and methodology to develop a 
system that works with Ultrashort TE (UTE) MR imagery, 
shown to be effective in early AS diagnosis [4] (Fig. 1.)

• Developing a system able to extract SI joint regions of 
interest (RoIs) from a patient CT scan without 
manual input to bound the locations of RoIs, similar to what was done for MR; this 
would help develop a fully automatic erosion or AS detection system requiring only a 
patient CT/UTE scan video as input.

Future Work

Some parts from: Castro-Zunti, R., Park, E., Younhee, C., Jin, G., and Ko, S. "Early detection of ankylosing spondylitis using texture 
features and statistical machine learning, and deep learning, considering patient age." Computerized Medical Imaging and 
Graphics. 82. (2020). p. 101718
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• Ribs are the most common bones to be 
fractured.

• >66% of patients admitted to trauma centres
for chest trauma have a rib fracture

• ~12 of patients admitted with a rib fracture 
will die as a result of their injuries
– 10% for young adults

– 22% for the elderly

• Although it is relatively easy for a radiologist to 
track and determine which of a human’s 12 
ribs have fractures, looking through 200+ CT 
scan frames can be tedious for a radiologist.
– Would be useful to streamline this.

Why is this important?

Modified from 

https://shopeverydaymedical.com/blogs/home/broken-ribs-

braces-to-treat-injured-or-broken-ribs
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• Via U-Net. Experimented with both 
single-class (rib only) and multiclass (rib 
and clutter). 

• Experimentation with various 
thresholding levels and morphological 
operations when finalizing output 
probability masks. 

Rib Segmentation
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• Inputs are RoIs found from the segmentation step.

• Custom computer vision software and multi-object tracking system. 
– Close to 2000 lines of Python code!

• IoU- and centroid-based tracking.

• Many applied heuristics pertinent to the way ribs move through a scan frame.

• Current best tracking model (with multiclass segmentation) achieves 45% correct 
accuracy and 69% mostly correct (ribs 3-8 correctly tracked) over 98 patients. 

Rib Tracking
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Dataset Acute (Recent) Fracture: 2,546 RoIs

Old (Healed) Fracture: 5,983 RoIs

Regular (No Fracture): 18,630 RoIs

Various Anatomical Clutter: 7,122 RoIs
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Rib Fracture Classification

Classful Results

Binary Results

Classful Norm. Confusion Matrix (Modified, Ours)

Binary Norm. Confusion Matrix (Modified, Ours)

• We fine-tuned a variety of InceptionV3, ResNet50, 
and VGG16-based CNNs with 5-fold cross 
validation. Best was first 7 blocks of InceptionV3.
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• We fine-tuned a variety of InceptionV3, 
ResNet50, and VGG16-based CNNs using 
6-fold cross validation.

• Best model was first 15 blocks ResNet50.
– Accuracy of 96.6% and macro sensitivity of 

94.8%.

– When ran as binary (rib vs. other) Accuracy 
of 99.5%, sensitivity of 99.7%, specificity of 
98.8%, and ROC AUC of 99.2% over 5-fold 
cross-validation test set.

• 31% completely correct fracture 
classifications and 76% partially correct 
fracture classifications over 98 patients.

Combined Rib vs. Anatomical Clutter and Rib Fracture Classification
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Example: (Red bounding box is predicted acute, blue is old, green is regular, grey is 
non-rib)
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Current Status of Research

• Rib Tracking/Labelling:
– A brief paper about the clinical aspects of the work to date is being prepared by partnering 

radiologists 

• Rib Fracture Classification:
– A paper about the computer vision / deep learning rib fracture classification system has been 

published.

• R. Castro-Zunti, K. Chae, Y. Choi, G. Jin and S. Ko, “Assessing the Speed-Accuracy Trade-Offs of Popular 
Convolutional Neural Networks for Single-Crop Rib Fracture Classification,” Elsevier Computerized 
Medical Imaging and Graphics, vol. 91, 2021, p. 101937.
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• Improve segmentation component. 

– Tendency for false negative predictions especially in the smaller, latter-stage ribs.

• Improve tracking component.
– Could develop additional heuristics or try to make some parts of the program simpler / more 

streamlined. 

– Could also possibly try training a deep learning- (rather than computer vision-) based tracker? 
Previously thought to have lack of labelled data, but one could take the fully correct labelled 
patient scans, extract bounding boxes, and train. 

• Would have ~50 patients. 

Future Projects
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• Improve fracture classification component.

– Could employ more sophisticated methods/models, have 2 models (one for fracture classification 
and one for rib vs. clutter) rather than 1.

– Could design a heuristic/threshold for deciding fractures.

• E.g., rib X detected as acute 1 time vs. as 4 times?

– Additionally, tendency for false positive old samples in areas of rib region creation (bottom) and 
destruction (top), and false positives on early- and later-sequence ribs.

• Probably best served using some selection algorithm for what rib RoIs get predicted by classifier. 

Future Projects
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• Gout (tophi) is a uric acid accumulation that 
can lead to massive swelling and inflammation.
– Can deteriorate joints, cartilage, and bone.

• Dual-energy CT (DECT), introduced ~2010, was 
shown to easily image tophi as green patched.

• Though at first believed to be revolutionary, 
later found that some green regions of interest 
(RoIs) can appear even in normal/healthy 
patient DECT scans.

• Would be useful to have a diagnostic model to 
overcome challenges associated with these 
false positive RoIs.

What is the problem?

From https://www.bestpodiatristnyc.com/what-is-gout-and-

foot-surgery-for-gout/
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• 47 gout patients and 27 control patients. 

• Extracted 10,912 gout RoIs and 7,792 control RoIs.

• First DECT gout image dataset to be used for machine learning purposes.

– Earlier work used structured patient records, not images [1]. 

• [1] Bahra, G., Wiese, L. (2018). Classifying Leukemia and Gout Patients with Neural Networks. In: 
Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information 
Science, vol 903. Springer, Cham. 

Dataset
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• Because tophi/artifacts appear green 
in DECT, designed a computer vision 
algorithm to crop (with a small 
padding) regions of green.

• Ignored false positives at the edge of 
the appendage via a technique that 
looked at the % background in a RoI’s
bounding box. 

• No clear method to remove sidebar if 
present.

– Presumed that a radiologist could do this 
manually. Possible computer vision 
future work project.

Tophi/Artifact Detection
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• We fine-tuned InceptionV3, ResNet50, and VGG16-based CNNs.

• Because size of RoIs is variable, trained 3 models per 
architecture:
– Small, medium, and large, based off area-size quartiles over the dataset.

• Per-patient dataset split based on large area-size quartile 
(because large had fewest cropped samples). Highest 6-fold 
cross-validation validation accuracy/AUC for each area-size 
dataset was VGG16 trained with global average pooling.

• Trained traditional ML classifiers using general patient features.
– 7 features: # boxes found, % boxes in each area-size dataset, % RoIs

predicted as gout in each area-size dataset.

• Best was linear SVM. Per-patient cross-validation test results:
– Accuracy 91.89%, sensitivity 87.23%, specificity 100%, ROC AUC 93.62%.

Tophi vs. Artifact Classification
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• Improve RoI detection.

– Seems to already work decently, but one could 
try a deep learning approach, or to develop a 
component to automatically remove sidebars 
when present (right image).

• Improve classification CNNs or final per-
patient prediction algorithm.
– Could employ more sophisticated 

methods/models, investigate an ensemble of 
methods/models, etc. 

• W. Yoo, E. Park, D. Lee, R. Casto-Zunti, S. Ko and Y. Choi, “Solving the 
Final Puzzle of Gout Detection in DECT via Machine Learning-Based 
Mitigation of Pseudolesion-Related Challenges: Enhancing Diagnostic 
Accuracy” accepted to ACR Convergence 2023

Future Work
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• Angiography refers to blood (etc.) 
vessels. There are techniques to capture, 
segment (in orange), and develop 3D 
reconstructions of vessels (right). 

• However, when conducting surgery, a 
surgeon must locate an optimal 
viewpoint wherein the visibility of the 
vessel of interest is maximized. 
– Time consuming, especially where there is 

potentially critical surgery to be performed!

• A program that could process all images 
across all the system’s rotations and 
angles and automatically find the 
maximized visibility would be invaluable.

Project Overview
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• We are presently 
experimenting with 
functions based on the 
convex hulls of the 
segmented lines.
– Traditional computer vision.

• Research is still relatively 
preliminary.

Methodology

53



Optimal Viewpoint for Angiography

• Continue developing system, integrating 
more components, refining, etc.
– Would like to incorporate aspects like “tip” 

(magenta) vs. “branch” (cyan) maximization, 
and possibly use information about “holes” in 
the line segmentation to determine 
undesirable vessel cross-overs. 

• Work with radiologists to develop a 
metric.

– E.g., weight of “best” viewing rotation+angle
vs. a nearby rotation+angle. 

• Possibly (if we can get a sufficiently large 
annotated dataset) integrate some form of 
machine/deep learning to the project. 

Future Work
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• Entities throughout the world face the problem of detecting hidden explosive 
devices where human and canine inspection might not be a viable solution.

• The goal is to develop a fast and light-weight classification model to be used in an 
electronic nose to identify very small concentrations of explosive substances 
(Gunpowder and trinitrotoluene), by means of deep learning.

• 149 samples were taken, combining TNT or gunpowder with either soap or 
toothpaste, or acquiring raw samples of those substances in amounts ranging from 
as low as 0.1 g to 2 g. 

• For the classification problem, five models were evaluated: k Nearest Neighbor, 
Support Vector Machine, Random Forest, Convolutional Neural Network and Long 
Short Term Memory. 

Using  a Low-Cost Electronic Nose



Deep Learning for Fast Detection of Explosives

56

• The goal is to develop a fast and light-weight classification model to be used in an 
electronic nose to identify very small concentrations of explosive substances 
(Gunpowder and trinitrotoluene), by means of deep learning.

• 149 samples were taken, combining TNT or gunpowder with either soap or 
toothpaste, or acquiring raw samples of those substances in amounts ranging from 
as low as 0.1 g to 2 g.

Using  a Low-Cost Electronic Nose

• For the classification problem, five models 
were evaluated: k Nearest Neighbor, Support 
Vector Machine, Random Forest, 
Convolutional Neural Network and Long Short 
Term Memory.
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The Final Model

• It implements an LSTM modification of a LeNet model, already proven to work in gas 
classification.

• It maintains good accuracy with only 30 seconds. The samples captured data during 6 
minutes. This speeds up detection and reduces model size.

J. Torres-Tello, A. V. Guaman and S. Ko, 2020. “Improving the Detection of Explosives in a MOX Chemical Sensors Array with LSTM 
Networks,” IEEE Sensors Journal, Vol. 20, Iss. 23, pp. 14302-14309.
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• Aeroponic process can grow 30% more food up to 3 times faster than traditional 
methods, using a fraction of the water and land.

• Three ML models have been implemented and evaluated: SVM, RF, and NN. 

• The last two gave good results, and were used to create an Ensemble predictor for 
yield, that increased the accuracy of the predictions.

Ensemble Learning for Improving Generalization in Aeroponics Yield Prediction

• Six crops were evaluated, with an 
average R^2 value of 0.81 over 
the  complete dataset.

• Aeropod (Farmboys) is a system that 
allows total control of variables, and 
records data of crop production.

J. Torres-Tello, S. Venkatachalam, L. Moreno and S. -B. Ko, "Ensemble Learning for Improving Generalization in Aeroponics Yield Prediction," 2020 

IEEE International Symposium on Circuits and Systems, Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181283.
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• This work has two main goals: (i) use data fusion to improve yield prediction in 
aeroponics, and (ii) find which features are more relevant for yield prediction of six 
different crops.

• To reach these goals, a number of artificial intelligence models and an interpretability 
analysis based on Shapely Additive exPlanations (SHAP) have been implemented.

Interpretability of AI Models that use Data Fusion to Predict Yield in Aeroponics

• The models were trained 
using 200 samples that 
were collected for almost a 
year, including information 
from different air and 
water quality sensors 
besides manually recorded 
data.
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• Our models reached a coefficient of 
determination value R2 = 0.752 for the 
validation dataset in the best case (CNN-based 
model).

• As a result, two main features were identified 
in the dataset: Room CO2 and Reservoir 
Temperature.

• SHAP values also provided important 
information for feature selection. These 
results could be the first steps towards the full 
automation of an aeroponics crop production 
system.

Interpretability of AI Models that use Data Fusion to Predict Yield in Aeroponics
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• A common technique for small datasets is the use of pre-trained 
models. 

• However, the availability of such models is mainly in the RGB 
image domain. Therefore, this work explores the potential of 
pointwise convolutions to adapt the higher number of channels 
in HSI (150) to match the dimensions of a pre-trained VGG-16 
model (3 channels).

• By using this technique, we could train a model that predicts the 
moisture content of canola plots.

• The developed DL algorithm over the test dataset resulted in a 
R2 of 0.77.

Transfer learning from RGB to HSI by means of pointwise convolutions

Julio Torres-Tello, Keshav D Singh, Seok-Bum Ko, Steve Shirtliffe, "Transfer Learning from RGB to Hyperspectral Images 
by means of Pointwise Convolutions", 5th Annual P2IRC Symposium, 2020, Winner of Best Poster Competition.
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• A DL based approach for optimizing the yield 
prediction process of spring wheat, using 
multispectral images. 

• We assessed both the temporal features to find 
the most valuable time to take images, as well as 
the contribution of spectral bands.

• The most crucial flying times for 
acquiring images were at late-heading, late-
flowering, dough-development, and harvesting 
stages. 

• The two most useful colour-bands for yield 
prediction were red and red-edge.

Identifying Useful Features in MSI with DL for Optimizing Wheat Yield Prediction

J. Torres-Tello and S. -B. Ko, "Identifying Useful Features in Multispectral Images with Deep Learning for Optimizing Wheat Yield Prediction," 2021 IEEE 

International Symposium on Circuits and Systems, 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401360.
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• Moisture content prediction is relevant for assessing the degree of maturity of a crop, 
which relates to efficient harvesting and quality control. 

• An accurate DL model for the prediction of the moisture content of canola and wheat 
crops, based on hyperspectral images taken by several drone flights. 

• The model includes a final ensemble of two branches for analysis of spatial and 
spectral features, and it reached a coefficient of determination of 0.916 and 0.818 for 
the canola and wheat test datasets, respectively.

A Novel Approach to Identify the Spectral Bands that Predict Moisture Content in
Canola and Wheat (ongoing)
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• SHapley Additive exPlanations
analysis allowed us to study the 
individual predictions of the models.

• Using this approach actually obtains 
the spectral bands that 
are important for this task, since 
they are similar to PCA results, and 
they fall on the NIR part of the 
spectrum, which is widely used in 
moisture measurement of 
agricultural products and vegetation 
analysis.

A Novel Approach to Identify the Spectral Bands that Predict Moisture Content in Canola and Wheat

J. Torres-Tello and S. Ko, 2021. “A novel approach to identify the 
spectral bands that predict moisture content in canola and 
wheat,” Biosystems Engineering, Vol. 210, pp. 91-103.
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A pipeline for Brassica Carinata Emergence counting developed in partnership with 
Computer Science and Plant Science for P2IRC.

It is slow, tedious, and prone to error to count manually. Counting is valuable for yield, 
and thus is important to farmers and crop phenotypers. 

Leyeza, B., Seidenthal, K., Aziz, S., Castro-Zunti, R., Molahasani, M., Stavness, I., Ko, S., Vail, S., and Eramian, M. (October 2019) 
“Clump it up!: clump-based emergence counting of brassica carinata.” Poster presented at the (International) 4th Annual P2IRC 
Symposium, Saskatoon, SK. Winner of Best Poster Competition. 
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Used combinations of 6 object detection methods paired with 12 counting methods.

Object Detection part example. 

Example of 1 row divided into 2 parts.

SSDlite+MobilenetV2 = blue
SSDlite+ResNet = magenta

YOLOv3 = yellow
U-Net = cyan
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Results for object detection.

Results for best models of the 72 models tried.

• AbsCountDiff - absolute difference between the predicted and true total number of plants in a row 
• CountDiff – The difference between the predicted and true total number of plants in a row
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Automatic license plate recognition (ALPR) is fairly easy for humans, but difficult for 
computers—especially when plates are blurry, skewed, partially occluded, over or 
underexposed, etc.—because standard image processing techniques to locate a license 
plate amongst a complex background, and recognize the characters on the plate, fail.

The Problem The Goal

GPJ442

4CTTM28

Finding the plate 

in complex 

background
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Deep learning can help for both localization and recognition! We use a MobileNet-like 
architecture: a modified SSD object detection network with linear bottlenecks and depth-
separable convolutions (most important) for speeding convolution with negligible accuracy 
loss. 

Yépez, Juan; Castro-Zunti, Riel D.; Ko, Seok-Bum: 'Deep learning-based embedded license plate localisation system', IET Intelligent 
Transport Systems, 2019, 13, (10), p. 1569-1578, DOI: 10.1049/iet-its.2019.0082IET Digital Library, https://digital-
library.theiet.org/content/journals/10.1049/iet-its.2019.0082
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• A DSC is a two-step process involving 
a depthwise convolution followed by 
a pointwise convolution [1], [2]. A 
depthwise convolution performs 
filtering over multiple channels 
while allowing the channels to 
remain separate [2]. DSCs (right) 
reduce computation compared to 
standard convolution (top left) by a 
factor of k2dj/(k2 + dj), where k is the 
kernel size and dj is the dimension of 
the output channel layers 
(computational savings graph 
bottom left).

Depthwise Separable Convolution (DSC)
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We trained/tested the localization system on license plates from 3 public datasets 
(Caltech Cars [American], NTUA [Greek], and University of Zagreb [Croatian]). Accuracy:

3
4

5

6
7

8
9
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• We used a low-cost embedded system
– Raspberry Pi 3 with a quad core 1.2GHz processing power chip and 1 GB of RAM.

– Intel Neural Compute Stick 2 (NCS2)

• Enables a CNN to be deployed on a low-power chip for real-time inference

• No connection to the cloud or large processing server

• Allows 1 trillion operations per seconds (TOPS)

– Samsung S5K2L1 camera

• 12 MP resolution and a sensor of 1.4 µm

• 1/2.6" and 10x optical zoom was used

• 60 FPS video streamed to the Raspberry Pi 3.

• 99.77% localization accuracy over 898 vehicles.

• The system can run at an average of 13 FPS.

• Multiple plates can be localized in the same frame.

• https://www.youtube.com/watch?v=7eyfGCW_UwQ

We tested the localization system using Saskatchewan (Canadian) License Plates.

https://www.youtube.com/watch?v=7eyfGCW_UwQ
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We trained the recognition system on Californian license plates from the Caltech Cars 
and UCSD-Stills, with dataset augmentations via the following image 
transformations:

Horizontal motion blurringEqualizing the histogram of the Y 
channel in YUV color space

Greyscale representation (V 
channel in HSV color space)

Greyscale 
representation (OpenCV 

BGR2GRAY)

Binarizing (Otsu’s 
Thresholding), and its 
inverse binarization

Normal
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We used OpenVINO to accelerate the recognition model onto a Raspberry Pi 3 + NNA 
(specifically, Neural Compute Stick 2) hardware platform. 

OpenVINO performs static model analysis and redesigns a 
deep learning model for optimal execution on a target device. 
It consists of two parts: the Model Optimizer (MO), and the 
Inference Engine (IE). OpenVINO creates files for an 
Intermediate Representation (IR) using the MO, and the input 
to the MO is the network model trained using Tensorflow. 
The output of the MO is a model optimized for execution on a 
specific Intel CPU, GPU, VPU, FPGA, or a combination thereof. 

The MO optimizes the model via the following mechanisms:
• Pruning extraneous model components that are required at the time of training, but not at the time 

of inference. 

• Fusing operations. Some multiple operations can be combined into a single operation, and the MO 
detects such operations and fuses them.

• Bit-width reduction of weights (from 32- to 16-bit floating point) for compatibility with NCS2.
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Results of our work, and against others’ works: 

[10]

[11]

[11]

[12]

[10]

Castro-Zunti, Riel D.; Yépez, Juan; Ko, Seok-Bum: “License plate segmentation and recognition system using deep learning 
and OpenVINO.” IET Intelligent Transport Systems, 2020, 14, (2), p. 119-126, DOI: 10.1049/iet-its.2019.0481 IET Digital 
Library, https://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0481

https://doi.org/10.1049/iet-its.2019.0481
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Current Work

• Use OpenVINO (or another acceleration method) with localization research

Future Work

• Expand plate recognition research to more use cases / jurisdictions

• Develop end-to-end system by combining both localization and recognition 
and retraining

• Deployment of system(s)
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[1] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’. IEEE Conf. on Computer Vision and 
Pattern Recognition (CVPR), Salt Lake City, United States of America, 2018, pp. 4510-4520

[2] Bendersky, E.: ‘Depthwise separable convolutions for machine learning’,  https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-
learning/, accessed July 2018
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1036
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General Objective

• A 3-year project to produce a low-cost fast 
edge microcontroller-based system that 
receives camera input and processes it to 
extract relevant information, including the 
following:
• License plate number (see previous slide section)

• HAZMAT decal1 (current work)

• CVSA inspection sticker2 (current work)

• USDOT code3 (future work)

• Vehicle Axle Spacing4 (future work)

• In partnership with International Road 
Dynamics through a MITACS Accelerate Grant. 

1 2

3

4
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HAZMAT Detection and Classification

• 2229 HAZMAT placards over 1864 
images mostly captured from a 
U.S. vehicle check stop.

• From MobileDet EdgeTPU [1] we 
developed a novel architecture 
trained quantize-aware (INT8) and 
with a custom piecewise cosine 
decay learning rate function. 

• We implemented the model on a 
low cost ($115 USD) Raspberry Pi 4 
and Google Coral USB Accelerator 
edge system.

Castro-Zunti, R., Yépez, J., Choi, Y., Johnson, T., and Ko, S. “Real-Time Deep Learning-based HAZMAT Detection 
and Classification Edge System.” submitted to Springer Multimedia Tools and Applications: 16 pages
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HAZMAT Detection and Classification

• Over 15 HAZMAT classes, achieved 85.0% 
mAP@0.5.

• System achieved 104.49 FPS on a Jetson 
Xavier and 30 FPS on Jetson Nano.

• Compared to a previous work [2] on an 8-
class public dataset (on which we transfer 
learned our model) ours is 21-91% faster 
and generally more accurate (average of 
98.8% F1-score vs. 82.5% accuracy).

• Our model works despite unideal lighting, 
plate skews, and complex backgrounds. 
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CVSA Detection and Recognition
• 2 stage object detection system 

developed by modifying MobileDet
EdgeTPU [1] (baseline). 
– Stage 1 detects windshield, decal, and 

classifies decal colour. For better small 
object detection, 14% more parameters 
than baseline.

– Stage 2 detects and classifies year digit 
and corner cut. Because easier task, 17% 
less parameters than baseline. If 3-7 
decals found <30 frames from each 
other, use them all with majority vote.

• Models implemented in parallel on 
variety of edge computing / 
accelerator hardware. Yépez, J., Castro-Zunti, R., Choi, Y., Johnson, T., and Ko, S. 2021. “Real-time CVSA 

Decal Recognition System Using Deep Convolutional Neural Network 
Architectures.” IET Intelligent Transport Systems, Vol. 15, Iss. 11, pp. 1359-1371.

 

TABLE I FIRST STAGE BACKBONE. 

Input Layer k e n r s 

3202 × 3 Conv 3×3 N/A 1 0 2 

1602 × 32 Tucker 3×3 0.25-0.75 1 0 1 

1602 × 16 Fused 3×3 8 1 0 2 

802 × 16 Fused 3×3 4 1 1 1 

802 × 16 Fused 3×3 8 1 1 1 

802 × 16 Fused 3×3 4 1 1 1 

802 × 16 Fused 5×5 8 1 0 2 

402 × 40 Fused 3×3 4 3 1 1 

402 × 40 IBN 3×3 8 1 0 2 

202 × 72 IBN 3×3 8 1 1 1 

202 × 72 Fused 3×3 4 2 1 1 

202 × 72 IBN 5×5 8 1 0 1 

202 × 96 IBN 5×5 8 1 1 1 

202 × 96 (C4) IBN 3×3 8 2 1 1 

202 × 96 IBN 5×5 8 1 0 2 

102 × 120 IBN 3×3 8 1 1 1 

102 × 120 IBN 5×5 4 1 1 1 

102 × 120 IBN 3×3 8 1 1 1 

102 × 120 (C5) IBN 5×5 8 1 1 1 

 

TABLE I SECOND STAGE BACKBONE. 

Input Layer k E S 

3202 × 3 Conv 3×3 N/A 2 

1602 × 32 Tucker 3×3 0.25-0.75 1 

1602 × 16 Fused 3×3 8 2 

802 × 16 Fused 5×5 8 2 

402 × 40 IBN 3×3 8 2 

202 × 72 (C4) IBN 5×5 8 1 

202 × 96 (C5) IBN 5×5 8 2 

 

I
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• To assess the real-time suitability of our 
proposed system, we tested the following 
implementations of each custom model:
– On the RPi4 alone, using TFLite.

– On the RPi4 + NCS2 using OpenVINO’s IR files.

– On the RPi4 + Coral USB Accelerator using TFLite.

– On the Jetsons (Nano and Xavier) using the 
converted TensorRT files.

• The figure shows the GStreamer pipeline 
used for the system. GStreamer can reads 
frames in different formats and even from 
different sources in parallel, process them, 
and export them to a file or stream them 
over a network.

AI Hardware accelerators
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[1]
[3]

[4]

CVSA Detection and Recognition
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Future Work

• Develop remaining deep learning application modules
– USDOT

– Vehicle Axle Spacing

• Package modules together in an edge hardware-optimized system
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Face Super-Resolution with Deep Learning

• First CapsGAN for Super-Resolution

• Using MSG-GAN for Super-Resolution for the first time

MSG-CapsGAN: Multi-Scale Gradient Capsule GAN for Face Super Resolution
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Face Super-Resolution with Deep Learning

MSG-CapsGAN*: Multi-Scale Gradient Capsule GAN for Face Super Resolution

• Better Peak Signal to Noise Ratio (PSNR) than state-of-the-art

• Without using any attribute domain information

Method PSNR SSIM

Bilinear 20.85 0.574

VDSR [1] 22.96 0.652

Progressive [2] 22.66 0.685

Proposed MSG-CapsGAN 23.35 0.673

87

* Majdabadi, Mahdiyar Molahasani, and Seok-Bum Ko, “MSG-CapsGAN: Multi-Scale Gradient Capsule GAN for Face 

Super Resolution,” 2020 International Conference on Electronics, Information, and Communication (ICEIC), IEEE, 

2020.



Face Super-Resolution with Deep Learning

MSG-CapsGAN for multi-scale SR

• Use the error of all scales (x3,x4,x8) for tainting

• 𝑙𝑆𝑅 = (𝑙𝑥_128
𝑆𝑅 + 𝑙𝑥_64

𝑆𝑅 + 𝑙𝑥_32
𝑆𝑅 ) + 3 × 10−3𝑙𝐺𝑒𝑛

𝑆𝑅

• 𝑙𝐺𝑒𝑛
𝑆𝑅 = adversarial loss

• 𝑙𝑥_𝑖
𝑆𝑅 = content loss of 𝑖 × 𝑖 generated image 

VGG19

VGG19

Ground truth

generated

Feature Vector

Feature Vector
MSE 𝑙𝑥_𝑖

𝑆𝑅

Two examples of the generator’s outputs
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[1] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very deep convolutional networks,” in 
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1646–1654

[2] D. Kim, M. Kim, G. Kwon, and D.-S. Kim, “Progressive face super-resolution via attention to facial landmark,” arXiv
preprint arXiv:1908.08239, 2019

[3] Rajpurkar, Pranav, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta, Brandon Yang et al. "Mura: 
Large dataset for abnormality detection in musculoskeletal radiographs." arXiv preprint arXiv:1712.06957 (2017).
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Robust Face Super-Resolution*
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• Surpassing the state-of-the-art systems in terms of PSNR, Structural SIMilarity (SSIM), Multi-Scale Structural
SIMilarity(MS-SSIM), and Feature SIMilarity (FSIM)

• Outperforms the state-of-the-art face SR system in robustness

• Multiscale super-resolution

Introducing Feature SIMilarity (FSIM):

𝐹𝑆𝐼𝑀 = 𝑒
−𝐶×

𝑓1−𝑓2
2

𝑁
𝑓2

Where 𝐶 = 0.3, 𝑓 is the feature vector extracted form VGG16

and 𝑁 is the length of this vector.

*Majdabadi, Mahdiyar Molahasani, and Seok-Bum Ko, “Capsule GAN for robust face super resolution,” Springer Multimedia 

Tools and Applications, 79, 31205-31218 (2020).

Proposed Residual Generator Proposed MSG-CapsGAN

Method PSNR SSIM MS-SSIM FSIM

Bilinear 20.75 0.574 0.782 0.5320

Progressive Face SR [1] 22.67 0.687 0.908 0.6374

VDSR [2] 22.96 0.655 0.887 0.6103

MSG-CapsGAN 23.35 0.673 0.899 0.6371

Proposed Patch GAN 23.64 0.717 0.927 0.6788

Proposed VGG-Residual 23.53 0.719 0.929 0.6918

Low resolution            bilinear          state-of-the-art       proposed model      ground truth



Occult Fracture Detection (in progress)
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• Using multi-stage transfer learning paradigm

• Start with more general problem

• Fine tuning the model on the smaller datasets  

Multi-stage Transfer learning for dealing with limited available samples

Abnormality 
detection

• Mura dataset [3]

• Hand, Forehand, 
elbow, and fingers

• 20K samples

Large fracture 
detection

• Knee large 
fracture

• 1-4K samples

Occult fracture 
detection

• Occult knee 
fracture

• 500 samples

Proposed Workflow



Erosion Detection in Pipeline (in progress)
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• Detect the existence of the erosion based on the peruse in the pipe 𝑃(𝑡)

• Localizing the thinned area 

• In both time and frequency domain

Erosion Localization and Severity Detection Using Deep Learning in the Time and 
Frequency Domain

Frequency domain model
Time domain model



Biomedical Signal Processing

The current study proposes a deep architecture based 
on LSTM Networks for the classification of 6 grasp 

types as an end-to-end deep model approach, working 
with raw surface electromyographic signals.

Recently, studies show Deep Neural Networks could 
obtain surface electromyographic (sEMG) 

signal features in their internal architecture and use 
them directly over a classification task, avoiding all pre-
processing steps and improving the obtained accuracy.

An LSTM-based interconnected architecture for the classification of grasp types 
using sEMG signals
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Biomedical Signal Processing

Classification accuracy of 99.12% was obtained and compared with previous studies which use different machine learning techniques over the same 
dataset.

Results obtained showed that our model's architecture improves previous results as well as provides a robust solution avoiding overfitting, with an 
F1-score higher than 99% for all grasp types.

An LSTM-based interconnected architecture for the classification of grasp 
types using sEMG signals
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Biomedical Signal Processing

• The proposed model was
cross-validated over 5
subjects and the results
show an improvement of
the average accuracy
presented in previous
studies by at least 0.33%.

• Confusion matrixes are
presented to show the
low percentage of errors
obtained with our
model.

An LSTM-based interconnected architecture for the classification of grasp 
types using sEMG signals
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Biomedical Signal Processing

An LSTM-based interconnected architecture for the classification of grasp 
types using sEMG signals
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• Receiver operating characteristic (ROC) curves were obtained for each training fold to better visualize the
optimization of sensitivity versus specificity for our implementation.



Biomedical Signal Processing

An LSTM-based interconnected architecture for the classification of grasp 
types using sEMG signals

97

• A graphical representation in two dimensions (t-DSNE) presents errors for grasp classification related to Hook,
Tip, and Palmar grasps. Yet, most of the samples are well grouped which also conveys to the high accuracy
obtained by our model.



Teeth Extraction

•Dental Panoramic x-ray images
• Too noisy, has shadows, and interpretation is more

sophisticated in comparison with Bitewing or
Periapical images
•Covers whole mouth with relatively low radiation
• Low cost, widely used, reveals dental caries and

jaw-bone fractions

Material
Caries (Internal 

Dentine/ Occlusal)

Caries (Pulpitis/ 

Distal and Mesial)

Missing 

Tooth

Missing Tooth 

(long time ago)
Caries (Internal 

Dentine/ Distal)

Caries (Internal 

Dentine/ Distal
Caries (Internal 

Dentine/ Distal)

No Caries, 

It’s a shadow

No Caries, 

It’s a shadow!

Caries (Pulpitis)

Total Collapse

Restoration + Root 

Canal (appears 

brighter)

Problem Description

•Panoramic Images are used for various tasks; dental caries classification, lesion detection, human identification, etc.

• In this research, we focus on tooth decay detection. It means to find teeth which appeared to have dark spots on them. 

•Dentist/radiologist must investigate many x-ray images everyday, hence the chance of wrong detection (false positive 

mainly) increases throughout the day. Also, this process causes eyestrain for them.

• True detection of caries in Panoramic images is challenging. Even radiologists working for years can not detect tooth 

decay from image shadows through all the samples.

• Tooth extraction/segmentation is an important part required by most of the applications, such as dental caries detection.
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Teeth Extraction

Diagram of the Process
Pre-

processing
Initial ROI 
Detection

ROI 
Revision

Middle 
Line 

Drawing

Jaw 
Separation

Pop. 
generation

Final Best 
Pop.

Initial Line 
Removal

Tooth 
Extraction

Pop. 
Ranking & 
Selection

Final Line 
Removal

Genetic Algorithm

Detailed Diagram and Algorithms

• Vertical-edge filter
• Gaussian and

Bilateral filters

• Sauvola Binarization

Preprocessing

• Horiz. Integral Intensity

• First ma x: th e ed ge of
theleft angle of jaw

• First min: the edg e of
external oblique ridge

ROI 
Extraction • Contrast-limited

Adaptive
histogram
equalization

• Sauvola
Binarization

Preprocessing

• Middle-points
method

• Snake method

Jaw 
Separation • Multiple vertical

integral intensity
projections

• Genetic
algorithm

Tooth-Gap 
Detection

• Line removal by
distance to each
other

• Line removal by
intensity ranking

Tooth 
Separation

Fitting Generated Lines to Gaps

Line Removal based on Two Different Filter

• Preprocessing: Contrast Limited Adaptive Histogram Equalization 
(CLAHE)/ Sauvola Binarization/ Blurring Filters

• ROI Extraction: Edge Filters/ Checkpoint detection
• Jaw Separation: CLAHE + Sauvola/ Starting point + Snake through 

the gap
• Tooth Isolation: Vertical Intensity Projection/ Genetic Alg./ Line 

Removal

Maxillary Separation

Mandibular Separation
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Teeth Extraction

• Enhancements made on cost function and line removal method to improve the accuracy of mandible tooth extraction
• This study is the first to implement tooth extraction on Panoramic images and report the results. Panoramic images lack

explicit boundaries between segments, include unwanted parts, have shadows; but the acquired accuracy is in the line of
previous works carried out on easier image types.
• The overall accuracy is 77.56%; 81.44% for maxillary and 73.67% for mandibular teeth

Results 

Comparison between proposed method and other teeth extraction research works

Related paper:

A. Haghanifar, M. M. Majdabadi and S. -B. Ko, “Automated Teeth Extraction from Dental Panoramic X-Ray Images using Genetic Algorithm,” IEEE 

International Symposium on Circuits and Systems, Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180937.

[1] M. Abdel-Mottaleb, O. Nomir, D. E. Nassar, G. Fahmy, and H. H. Ammar, “Challenges of developing an automated dental identification system,” in 2003 46th Midwest Symposium on Circuits and Systems, 
vol. 1. IEEE, 2003, pp. 411–414.
[2] J.-V. Ølberg and M. Goodwin, “Automated dental identification with lowest cost path-based teeth and jaw separation,” Scandinavian Journal of Forensic Science, vol. 22, no. 2, pp. 44–56, 2016.
[3] O. Nomir and M. Abdel-Mottaleb, “A system for human identification from X-ray dental radiographs,” Pattern Recognition, vol. 38, no. 8, pp. 1295–1305, 2005.
[4] N. Al-Sherif, G. Guo, and H. H. Ammar, “A new approach to teeth segmentation,” Proceedings - 2012 IEEE International Symposium on Multimedia, ISM 2012, no. 09, pp. 145 148, 2012.
[5] A. E. Rad, M. S. M. Rahim, H. Kolivand, and A. Norouzi, “Automatic computer-aided caries detection from dental x-ray images using intelligent level set,” Multimedia Tools and Applications, vol. 77, no. 21, 
pp. 28 843–28 862, 2018.
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Deep Learning for Teeth Segmentation

• To segment each tooth completely; finding the roots’ boundary

• Mask R-CNN to obtain state-of-the-art results on Panoramic images [6]. Tooth-structure segmentation is

well performed on Bitewing images using deep CNN [7].

• Annotation needed for train/validation/test; separating each tooth in each image

Deep Learning for Segmentation

Architecture for teeth segmentation [1] Sample result obtained by Mask R-CNN [1] Tooth structure 

segmentation in Bitewing 
images [6]
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[6] G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep Instance Segmentation of Teeth in Panoramic X-Ray Images,” in Proceedings - 31st Conference on Graphics, 
Patterns and Images, SIBGRAPI 2018, 2019, pp. 400–407.
[7] O. Ronneberger, P. Fischer, and T. Brox, “Dental X-ray Image segmentation using a U-shaped Deep convolutional network,” pp. 1–13, 2015.



Deep Learning for Dental Caries Classification

• CNNs are used for different x-ray image tasks: landmark detection in Cephalometric images [8], finding lesions [9] 

and osteoporosis [10] in Panoramic images, tooth classification in CBCT images [11], diagnosing periodontally 

compromised teeth in Periapical images [12]

• Few works have been conducted on Panoramic images for classifying tooth decays; such as [13]

Deep Learning for Automating X-ray Image Analysis 

Landmark detection in Cephalometric 

images [3]
Tooth classification in CBCT 

images [6]

Dental caries detection using separated image 

of single tooth [8]

102

[8] H. Lee, M. Park, and J. Kim, “Cephalometric landmark detection in dental x-ray images using convolutional neural networks,” Med. Imaging 2017 Comput. Diagnosis, vol. 10134, p. 101341W, 
2017.
[9] R. G. Birdal, E. Gumus, A. Sertbas, and I. S. Birdal, “Automated lesion detection in panoramic dental radiographs,” Oral Radiol., vol. 32, no. 2, pp. 111–118, 2016.
[10] J. S. Lee, S. Adhikari, L. Liu, H. G. Jeong, H. Kim, and S. J. Yoon, “Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis 
system: A preliminary study,” Dentomaxillofacial Radiol., vol. 48, no. 1, 2019.
[11] Y. Miki et al., “Classification of teeth in cone-beam CT using deep convolutional neural network,” Comput. Biol. Med., vol. 80, no. September 2016, pp. 24–29, 2017.
[12] J. H. Lee, D. H. Kim, S. N. Jeong, and S. H. Choi, “Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm,” J. Dent., vol. 
77, no. 2, pp. 106–111, 2018.
[13] R. Ben Ali, R.  Ejbali, and M. Zaied, “Detection  and Classification of Dental Caries in X-ray Images Using Deep Neural Networks,” ICSEA 2016  Elev. Int. Conf. Softw. Eng. Adv., no. c, pp. 223–227, 
2016.



Deep Learning for Dental Caries Classification: PaXNet

• High-resolution Panoramic x-ray images collected from two main sources: UESB dataset [14] and from a local dentistry clinic in 
Iran.

• UESB dataset has teeth mask annotations along with it. For our dataset, we used previously proposed genetic-based teeth 
extraction algorithm to isolate teeth in each image.

• Labels are provided by a radiologist. Caries are classified into two categories: mild and severe. Each tooth gets a label, and 
segmentation masks are not available yet, due to its time-consumption and limited availability of radiologist/dentist. 

Material
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[14] G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in x-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, vol. 107, 
pp. 15–31, 2018.
[15] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,” 
arXiv preprint arXiv:1711.05225, 2017.

Proposed Model
• This research is the first one to perform dental caries detection 

on Panoramic x-rays. All previous studies have used less 
challenging x-ray types, like Bitewing or Periapical.

• Capsule network-based architecture is used for the first time 
for dental caries diagnosis.

• Feature extraction module is constructed by a voting system 
between different architectures. CheXNet [15] is applied for 
the first time in dental disease detection tasks based on x-rays. Architecture of PaXNet



Deep Learning for Dental Caries Classification: PaXNet
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• Gradient-weighted Class Activation Mapping (Grad-CAM) is 
used to highlight extracted features of each extractor models.

• Re-sampling technique is used to deal with class imbalance 
• PaXNet model illustrated robustness activation map generation 

when applying linear transformation to any input image
• PaXNet model achieved an accuracy of 86.04% in a test-set of 

368 teeth.  Recall scores for classification of mild and severe 
caries were 69.44% and 90.52%, respectively.

Results

Demonstration of the robustness of the systemSample Result

A. Haghanifar, M. M. Majdabadi, S. Haghnifar, Y. Choi and S. B. Ko, “PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and 
capsule classifier,” Springer Multimedia and Applications, Vol. 82, Iss. 18, pp. 27659-27679



COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning
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• Frontal chest x-ray radiographs (CXRs) with PA or AP
projections

• Collected from 10 different publicly available sources

• One of the largest collections of CXRs from patients with
COVID-19: https://github.com/armiro/COVID-CXNet

• Including 1326 images, as of May 2021. Images have different
sizes and are in different formats.

• Normal/non-COVID pneumonia images are collected from
different sources; mainly NIH CXR-14 dataset [1]. 5,000
normal and 4,600 non-COVID pneumonia x-rays are used.

• Different histogram equalization (HE) preprocessing methods
are used: HE, AHE, CLAHE, BEASF

• BEASF algorithm [2] is implemented in python for first time:
https://github.com/armiro/COVID-CXNet/blob/master/BEASF.py

Material & Preprocessing

[1] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common 
thorax diseases,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2097–2106.
[2] E. F. Arriaga-Garcia, R. E. Sanchez-Yanez, and M. Garcia-Hernandez, “Image enhancement using bi-histogram equalization with adaptive sigmoid functions,” in 2014 International Conference on 
Electronics, Communications and Computers (CONIELECOMP). IEEE, 2014, pp. 28–34.

Randomly selected images from different sources

Dataset distribution

https://github.com/armiro/COVID-CXNet
https://github.com/armiro/COVID-CXNet/blob/master/BEASF.py


COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning
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• The standard diagnosis method for detection of COVID-19 is by reverse transcription polymerase chain 
reaction (rRT-PCR). PCR testing has certain drawbacks; it needs special test-kits, and the results are 
generally available within hours to days.

• Hopefully, the disease could be assessed by detecting clinical features as well as imaging features of 
pneumonia [3].

• Since radiologists are visiting many patients every day and detection takes significant time, detection 
error rate may increase, ending up having false negatives which costs a lot to the patient and the 
medical staff.

• In this research study, we investigate the possibility of using deep learning-based automatic image 
classification system to detect COVID-19 pneumonia in CXRs.

• Although CT scans have proven to be more efficient revealing detailed features of the chest, there are 
less widely available and affordable than CXRs. Besides, patient's clinical situations often does not 
allow a CT scan.

Problem Description

[3] Y. H.  Jin et al., “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version)," Military Medical Research, vol. 7, no. 1, 
p. 4, 2020.



COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning
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• A U-Net based semantic segmentation module to extract 
lung from the body and background

• Trained on two datasets of manually segmented lung masks 
[4][5]

• Transfer learning from CheXNet [6], being trained on a large 
dataset of frontal CXRs to classify different lung diseases

• DenseNet-121 as the backbone

Developed Method

[4] S. Stirenko, Y. Kochura, O. Alienin, O. Rokovyi, Y. Gordienko, P. Gang, and W. Zeng, “Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation,” in 2018 IEEE 38th 
International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2018, pp. 422–428.
[5] S. Candemir, S. Jaeger, K. Palaniappan, J. P. Musco, R. K. Singh, Z. Xue, A. Karargyris, S. Antani, G. Thoma, and C. J. McDonald, “Lung segmentation in chest radiographs using anatomical atlases 
with nonrigid registration,” IEEE Transactions on Medical Imaging, vol. 33, no. 2, pp. 577–590, 2013.
[6] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,” 
arXiv preprint arXiv:1711.05225, 2017. 

The segmentation approach based on the U-Net

COVID-CXNet model architecture based on the DenseNet-121 feature extractor as the 

backbone



COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning
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• Grad-CAM to visualize model output results, and to prevent “right decision with 
wrong reason” phenomenon commonly encountered when datasets are small

• Lung segmentation to enhance model accuracy and robustness to recurring text/signs
• Label smoothing to add uncertainty to the labelling
• A hierarchical approach to improve scores in discrimination between normal and 

non-COVID pneumonia classes

Results

Final confusion matrix of COVID-CXNet

COVID-CXNet multiclass classification visualization results

A. Haghanifar, M. M. Majdabadi, Y. Choi, S. Deivalakshmi, and S. B. Ko, “Covid-CXNet: Detecting covid-19 in frontal chest x-ray images using deep 

learning,” Springer Multimedia Tools and Applications, 81, 30615-30645 (2022).



COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning
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• Since COVID-CXNet is a modification of CheXNet as the main 
model, there is room for increasing performance scores by 
benefiting from different methods as the classifier block instead of 
simple dense layers

• Capsule Network is a good option, which has previously 
demonstrated to be helpful in PaXNet project.

• Attention Modules are relatively new in this field. While channel 
attention modules are more popular in this area, there are 
convolutional attention modules as well. Convolutional Block 
Attention Module (CBAM)[7] is used for both channel and spatial 
attention dimensions and is general so that could be added to any 
CNN architecture. A huge motivation in terms of adding attention 
to the network is [8] where the authors have proved that using 
their developed uncertainty attention block, pneumonia 
classification in chest x-rays improved roughly 9%

Enhancements on Model Architecture (ongoing)

[7] S. Woo, J. Park, J Lee, and I. Kweon, “Cbam: convolutional block attention module,” Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3–19.
[8] C. Wang, F. Su, T. Lee, Y. Tsai, and J. Chiang, “CUAB: Convolutional Uncertainty Attention Block Enhanced the Chest X-ray Image Analysis,” arXiv preprint arXiv:2105.01840, 2021.
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HackTech-Covid Innovation Solution
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UV-SAFE: Advancing Market Product Disinfection with Automated UV-Technology 
Device

Output

• An automated device for viruses and bacterial disinfection for use in market
products published in proceedings of ETCM 2023, IEEE.

• Results of an experimental study, conducted with regular and irregular objects.

• The light incidence in the object was validated by experimental tests.

• The disinfection process takes 10 seconds per product, achieving a log-
reduction dose.

Lamps
configurations:

UV-Safe prototype



Academic Article Information Extraction
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• Automatically identifying and extracting areas of interest in academic works can help with 
further information extraction and analysis

• Datasets exist for training models on this task, but they often only annotate a handful of objects

• We create an expanding and open-source Densely Annotated Dataset (DAD) for academic article 
semantic segmentation

• Dataset publicly available on GitHub

• https://github.com/LivingSkyTechnologies/Dense_Article_Dataset_DAD

• Presented dataset in 2020 Workshop on Scientific Document Analysis

Document Structure Extraction

L. Markewich, Y. Xing, H. Zhang, Z. Jiang, N. Lambert-Shirzad, R. Lee, Z. Li and S. Ko, 
“Document Structure Extraction: An Exploratory Study,” 2020 Fourth International 
Workshop on Scientific Document Analysis (SCIDOCA2020), Nov. 2020.



Academic Article Information Extraction
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• DAD contains annotations for 42 document objects across 450 academic journals

• Other popular datasets like PubLayNet and DocBank contain annotations for 5 and 11 document 
objects respectively

Document Structure Extraction

Summary of annotated objects Summary of sourced academic articles



Academic Article Information Extraction
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• We develop a new loss function for semantic segmentation, 
extracting the bounding boxes from inferenced 
segmentations and calculating the generalized intersection-
over-union (gIOU) loss

• Additionally, we develop a custom weighting calculation that 
calculates class weights on every training batch, heavily 
weighting classes that are small/rarely appear

• Our methods result in a +1.99% F1 improvement with 
DeepLabV3+ on DAD

• DeepLabV3+ trained on DAD can be used for bootstrapped 
annotation, shows a 38% improvement in annotation speed

• Published in Springer IJDAR (2022)

Document Structure Extraction

Benchmark results on DAD w/ gIOU loss + loss weights

Benchmark results on PubLayNet w/ gIOU loss + loss weights

Logan Markewich, Hao Zhang, Yubin Xing, Navid Lambert-Shirzad, Zhexin Jiang, Roy Ka-Wei Lee, Zhi 
Li, and Seok-Bum Ko. Segmentation for document layout analysis: not dead yet. International 
Journal on Document Analysis and Recognition (IJDAR), Jan 2022



Academic Article Information Extraction

Document Content Analysis

• Content analysis includes many subtasks
• Sentiment Analysis

• Named Entity Recognition

• Topic Extraction

• Keyword Extraction

• Relation Extraction (RE)

• RE focuses on classifying relations between important nouns (named entities)

114

An example of relation extraction. Three entities are classified with specific relations.



Academic Article Information Extraction

Document Content Analysis
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Dataset # Entity Types # Relation Types

CoNLL04 [74] 4 5

Re-TACRED [79] 17 40

DocRED [95] 6 96

A state-of-the-art (SOTA) model only extracts background information.

No information about the actual content is identified.

• Datasets exist for relation extraction, but contain limited categories for entities and relations

• Models trained on these datasets will miss contextual information from the input



• We create a new Descriptive 
Relation Dataset (DReD) for 
describing relations between general 
noun-phrases
• 3,283 annotated paragraphs, 14,126 

sentences

• Models trained on DReD can 
describe rich and contextual 
relations missed by current 
approaches

• Work is current in review with IEEE 
Transactions on Artificial Intelligence

Academic Article Information Extraction

Document Content Analysis

116

SOTA model results Same relations 

described by a model 

trained on DReD

Relations found 

between general 

noun-phrases



• On-going projects for document content analysis 
continue
• Named entity recognition for scientific 

documents

• New metrics for text summarization models

• End-to-end argument mining and quality analysis

• Topic extraction

• The goal is to combine all extracted facts from 
the content into a knowledge base

Academic Article Information Extraction

Document Content Analysis (Future)
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Knowledge 
Base

Relations
Named 
Entities

Summaries Topics



• Named-Entity Recognition over scientific texts is 
vital for extracting and understanding 
information. 

• We introduce Sci-BERT+, an enhanced model to 
analyze scientific texts from the fields of 
Artificial Intelligence, Biomedical Engineering, 
and Natural Language Processing, by performing 
Named-Entity Recognition over them. 

• Our solution utilizes a pre-trained scientific 
BERT-based language model connected to a 
bidirectional LSTM network.

Academic Article Information Extraction

Named-Entity Recognition

118



• Sci-BERT+ is capable of improving pattern recognition for scientific entity types with high 
accuracy.

• It was evaluated across three different datasets (SciERC, TDMSci, and NCBI-disease), 
emphasizing its ability to learn from and work with scientific articles' semantics and syntax.

Academic Article Information Extraction

Named-Entity Recognition

119



• Another advantage is seen while comparing the performance of our system between BIO and 
IO encoding methods. Our model could be used with either of these two encoding types, 
obtaining similar results (CM Example figures with the TDMSci Dataset).

Academic Article Information Extraction

Named-Entity Recognition

120



• An implemented t-DSNE method shows the improvement obtained in classification while 
comparing the pure SciBERT model against our proposed solution, SciBERTN.

Academic Article Information Extraction

Named-Entity Recognition

121

SciBERT                                                           SciBERTN



• It is important to emphasize that our model, SciBERTN, refrains from fine-tuning the SciBERT 
layers and exclusively focuses on fine-tuning the LSTM layer. Consequently, our approach 
centers around creating a new foundational model with comparable attributes while achieving 
superior performance compared to a fine-tuned SciBERT model.

Academic Article Information Extraction

Named-Entity Recognition

122



Academic Article Information Extraction
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