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Optimize Arithmetic Units for Efficient Deep Learning Computation
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Design of Efficient DNN Accelerator Architectures
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Creating, Training, and Optimizing Deep Learning Network/Model Architectures
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Retinal blood vessel segmentation using fully convolutional network with

s # N s # 1 )
16x16x4096 16x16x4096 16x16x2
/ x43x384 43x43’(384 43x43x256 \/ \/
%x%ﬁs/ conv conv8

transfer learning

173x173x96 conv4 (scoxn)
543x
’ 500x500x3 deconv
Retina image (upscore)
conv1 crop & merge

* A full-size retina image is divided into multiple 50 x 50 image patches.

* Each image patchis fed into fully convolutional AlexNet for retinal vessel
segmentation.

Z. Jiang, H. Zhang, Y. Wang and 5. Ko*, 2018, "Retinal blood vessel segmentation using fully convolitional network with transfer learning,” Elsevier Computerized
Medical Imaging and Graphics. Vol. 68, pp. 1-15.
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Retinal blood vessel segmentation using fully convolutional network with

transfer learning

Performance comparison with the related deep learning based works on DRIVE database.

Algorithm Accuracy Sensitivity Specificity AUC

Wang et al. (2015)! 09533 08173 09733 0.9475
Soomro etal (2017 0.9480 0.7460 09170 0.8310
Liet al. (2016)° 09527 0.7569 09816 09738
Proposed method 09624 0.7540 0.9825 09810

Performance companison with the related deep learning based works on STARE database.

Algorithm Accuracy Sensitivity Speaficity AUC

Wang et al. (2015)! 0.9621 0.8104 0.9791 09751
Soomro et al. (2017)? 0.9470 0.7480 0.9220 0 8350
Li etal (2016 0.9628 0.7726 0.9844 0 OR70
Proposed method 09734 0.8352 0.9846 0.9900

WWang, 5., ¥in, Y., Cao, G, Wei, B, Zheng, Y., Yang, G., 2015. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning, Nenrocomprting 149 (PB),
706-717.

1Soomro, T.A, Afifi, A, Gao, T, Hellwich, O, Ehan, M.A U, Paul, M., Zheng, L., 2017. Boosting sensitivity of a retinal vessel segmentation al gorithm with
convolutional neural network: 2017 International Conference on Digital Image Computing: Techmigues and Applications (DICTA) 1-8.

¥Li, Q. Feng, B, Xie, L., Liang, P., Zhang, H., Wang, T., 2016. & cross-modality learming approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35 (1),
109-1135.
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Lung Nodule Classification on Computed Tomography

 Computed Tomography (CT) is helpful in reducing the lung cancer
— High sensitivity to detect lung nodule

— Easyto locate lung nodule

* Different types of nodules have similar visual representation

According to seminal National Lung Screening Tail,
screening CT scan reduce lung cancer death in 20%, but
96.4% of nodule findings showed a false positive

Benign nodule Malignant nodule
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Deep Learning for Classification of Small (< 2 cm) pulmonary nodules on CT Imaging

/ (a) CTLungNet

Feature Maps Feature Maps
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K. Chae, G. Jin, S.Ko, Y. Wang, H. Zhang, E. Choi, H. Choi, 2020. “Deep Learning for Classification of A Small (<2cm) Pulmonary Nodule on CT Imaging: A
| Preliminary Study,” accepted to Elsevier Academic Radiology, Vol. 27, Iss. 4, €55-¢63.
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Comparison with AlexNet and Human Reviewers

 CTLungNet showed higher AUC value (0.85 vs 0.82) in ROC curves.

 CTLungNet, as a second reviewer, significantly improved performances of
radiologists with less experiences (e.g., two students and physicians).

1.00- 1.00 0-09
p=0.02* .65
0.90
0.80
0.75-
0.70
2 o 0.60
2 =
= 0.50- € o050
3 S
@ < 0.40
0.30
0.25-
0.20
=== AlexNET 0.10
0.00 - — CT-lungNET 0.00
D.ll}l} 0.|25 0.50 0.75 1.00 Student 1 Student 2 Physician 1 Physician 2 Resident 1 Resident 2 Thoracic Thoracic CT-lungNET (%)
radiologist 1  radiologist 2
1-Specificity W Testl M Test2

Note: Test 1, independent observer performance test without aid of CTLungNet; Test 2,
- observer performance test with reviewing the CTLungNet’s malignancy prediction rate. !
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Novel Convolutional Neural Network Architecture for Improved Pulmonary Nodule
Classification on CT

....................................................................................................................................................
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Comparison with Pervious Works

Method Accuracy (%) Sensitivity Specificity AUC

Li et al. [1] CNN with 1 single-scale 80.15 0.789 0.818 0.854
convolutional layer

Zhao et al. [2] CNN with 2 single-scale 84.97 0.843 0.858 0.902
convolutional layers

Tajbakhsh et al. [3] Transfer learning on 80.58 0.821 0.787 0.855
pre-trained AlexNet

Shin et al. [4] Transfer learning on 86.68 0.906 0.798 0.933

pre-trained GoogleNet
Shen et al. [5] Multi-cropped CNN 86.77 0.846 0.895 0.940
Proposed Method Multi-scale + multi-path 90.38 0.887 0.924 0.948

* All CNNs were trained and evaluated under LUNGx Challenger database [6] with 5
folder cross-validation.

Y. Wang, H. Zhang, K. Chae, Y. Choi, G. Jin, and S. Ko, 2020. “Novel convolutional neural network architecture for improved pulmonary nodule classification on computed

m tomography,” accepted to Springer Multidimensional Systems and Signal Processing, Vol. 31, pp. 1163-1183. 13
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Breast Lesion Classification on Automated Breast Ultrasound

 Automated breast ultrasound (ABUS) is nonradioactive and used as a supplemental
screening for breast lesion detection.

— Compared with mammography, screening ABUS still takes a significantly longer time.

Transverse view

Example of ABUS image for screening in 50-year-old woman.
A benign nodule is located in both coronal and transverse
views and enclosed by red rectangular boxes.

Coronal view

Y. Wang, E. Choi, H. Zhang, G. Jin and S. Ko, 2020. “Breast cancer classification in automated breast ultrasound using multi-view CNN with transfer learning,” Elsevier

Ultrasound in Medicine & Biology, Vol. 46, Iss. 5, pp. 1119-1132. =
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Transfer learning on Inception v-3

-
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* |nception-v3
— Widely used for natural image
classification task

— Achieved 78.1% accuracy on
ImageNet

* Transfer learning on Inception-v3

— Without design CNN architecture
* More complex hyper-parameters
tuning
* Trial-and-errorto determine
number of layers
— Inherit feature extraction power
from natural images to medical
imaging
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Breast Cancer Classification in ABUS using Multi-view CNN with Transfer Learning
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Comparison with other CNN architectures

Method

Sensitivity | Specificity AUC

View strategy Backbone
Coronalview Inception-v3 0.831 0.800 0.891
Transverse view Inception-v3 0.843 0.844 0.953
ResNet-50 0.809 0.830 0.928
Multi-view strategy A Inception-ResNet-v2 0.870 0.875 0.976
Inception-v3 0.885 0.889 0.982
Multi-view strategy B Inception-v3 0.853 0.867 0.959

18



CNN-based Carries Identification on Micro-CT Image

* Micro-CT is a most advanced modality used by dentists
to diagnose carries.
* Provides a 3D view of the entire teeth.
* Improved carries detection rate compared to X-ray.

* Problem: screening on Micro-CT is still a time-
consuming time due to each Micro-CT Scan produces
hundreds of slice images.

e Solution: A CNN-based CADx system is developed to
classify slice images of a Micro-CT scan into normal
(Without carries) or abnormal (Contains carries).

lllustration of Micro-CT slice image. Red
arrow indicates a caries.
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Preliminary Results

* One Micro-CT cases was collected from department of health science at University of

Saskatchewan:

* Consists of 590 micro-CT slice image.
* Two carries were identified in 40 of the 590 slice images.

* Transfer learning is applied to train three different CNN architectures:

* |Inceptionv3
* DenseNet
* ResNet

* ResNet achieved the best classification performance compared to other two.

Sensitivity

Specificity

ResNet backbone

80.00% (8/10)

88.98% (105/118)

20



Anterior Mediastinal Lesion

A common disease in the chest.

CT is widely used in the diagnosis of
mediastinal diseases.

Problem: difficult to distinguish lesions in CT
images because of image artifact, intensity
inhomogeneity, and their similarity with other
tissues.

Solution: segmented lesion can provide
radiologists a method to better subtract the
features of the lesions, thereby improving the
accuracy of diagnosis.
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Novel CNN for Mediastinal Lesion Segmentation

( CT Slice image ) * A total of 185 CT scans was collected from JBNU hospital.
( : A CNN-based architecture is developed to segment lesion
- \ from CT imaging.
ResNet Vision * Multi-feature learning via ResNet and vision transformer.
Backbone Transformer
\_ J
) . * Preliminary Results:
Dilated
Convolution Dice coefficient Sensitivity Specificity
layer
. J 3D-ResUNet[1] 87.73% N/A N/A
( Feature Concatenation j Proposed Model 85.41% 0.854 0.8523
:
( Upsampling ]
( Predicted Mask ] [1] Huang, S., Han, X., Fan, J., Chen, J., Du, L., Gao, W., Liu, B., Chen, Y., Liu, X., Wang, Y., Ai, D., Ma,
G., & Yang, J. (2021). Anterior Mediastinal Lesion Segmentation Based on Two-Stage 3D ResUNet With

Attention Gates and Lung Segmentation. Frontiers in Oncology, 10.
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What is Ankylosing Spondylitis (AS)?

* ASis an arthritis that affects the spine, and sacroiliac (SI)
joints in the pelvic region.

Inflammation

* Not well known outside MSK radiologists and has an
average diagnostic delay of 7-10 years.

— Continued patient suffering

— Strain on healthcare system, 12k (adjusted for inflation, 2006 to
2022) per year [6]

* Visualized in the sacroiliac joints (SlJs).

v

Erosion

v

Sclerosis

 Would be useful to have a diagnostic model.

Disease Progression:
Modified from
https://www.faceyourbackpain.com/ankyl
osing-spondylitis

23



From an abdominal/pelvic CT scan (left), can erosion be differentiated from a control
patient?
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Machine and Deep Learning for Early Detection of @

The ROC of Random Forest (10 decision trees) machine learning classifiers trained on
GLCM and LBP texture features (8 features in total, 4 from each), 8-fold cross validation:
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96.0% accuracy, 92.9% sensitivity 82.4% accuracy, 80.6% sensitivity
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The ROC of a deep learning classifier trained via transfer learning on Inception-V3, 8-
fold cross validation:
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Comparison of AS detection against similar COMPARISON OF OUR NEURAL NETWORK WORK WITH SIMILAR WORK.
Work Algorithm ROC Sensitivity Parameters Features  SI Joint
. . AUC Per SI  Regions
([1,2] use a dataset comprised of MR imagery) Joint
Our Work: CNN-acquired Features
COMPARISON OF OUR STATISTICAL MACHINE LEARNING WORK WITH Modified 0.97 97 5% 2939 x N/A 631
SIMILAR WORK. . 6
InceptionV3 10
Algorithm ROC AUC  Sensitivity Features SI Joint
Per SI  Regions From [ 1 ]: Texture Features
Joint MLP ANN 0.93 73% Not 39 612
QOur Work: Texture Features men-
tioned
k-NN 0.90 93.9% 8 281
Random 0.97 96.0% 8 281 From [ 2 ]: Texture and Spectral Features
Forest MLP ANN  0.95 73% Not 13 612
From [ 2 ]: Texture and Spectral Features :?;:1(; d
k-NN 1 0.91 91% 5 612
k-NN 2 0.96 77% 17 612 From [3] CNN-acquired Features
Castro-Zunti, R., Park, E., Younhee, C., Jin, G., and Ko, S. "Early detection of S-layer 0.97 95% >19x10° N/A 34894
ankylosing spondylitis using texture features and statistical machine CNN -+
learning, and deep learning, considering patient age." Computerized Random
Medical Imaging and Graphics. 82.(2020). p. 101718 Forest
Ensemble 27
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doesn’t do that bad against fine-tuning on a vanilla InceptionV3 model despite using
93.7% less parameters.

True Positive Rate
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Our Custom Model

2 ROC fold 1 (AUC = 0.99)
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’ == (Chance
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AS Diagnostic System

AS diagnostics commonly done using MR because
CT has radiation, which is unsafe for patients [7].

MR can also image the very earliest symptoms
(inflammation) before radiographic changes (i.e.
erosion) [8].

However, CT tends to outperform MR for AS
diagnoses [7] due to the inflammation also being
prevalent in control populations [9].

Sought to develop a general AS diagnostics system
using conventional MR as an input. Showed that
combining 3 types (TIWTSE, T2wFS, and T2wPCFS)
as RGB is better than any single type alone for
classification.

(c) (d)
Different MR imaging sequences (a-c)

and their combined (RGB) image (d).

SIJs' bounding boxes are shown in white.
30
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SlJ Detection

* We fine-tuned a YOLOV5 Medium
object detection network using the
combined imagery.

e 835 radiologist-annotated frames from
38 patients (18 AS and 20 control).

* Per-patient-based (i.e. the patients in
the train, validate, and test folds were
disjoint) 6-fold cross validation F1-score
of 99.9% and mAP@0.5 of 99.5%.
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Confusion Matrix

S1J AS vs. Normal Classification

 We fine-tuned a variety of InceptionV3, AS
ResNet50, and VGG16-based
convolutional neural networks (CNNs).

e Same dataset as for detection. 531 AS
and 606 control Sl joints.

Tue label

Normal 4

Receiver operating characteristic for multi-clags

10 4 — ROC curve of class A5 [area = 0.89)

e Bestwas an ensemble of VGG16

networks trained with global average _ © ﬁ
pooling.

Predicted label

u
0.6 1

* Per-patient Accuracy of 89.5%,
Specificity of 95%, Sensitivity of 83.3%,
ROC AUC of 89.2%.

— Specificity especially interesting considering
issue with inflammationin control patients.

#
ﬂ.ﬂ T T T T
| 00 02 04 06 08 10
False Positive Rate

I
]
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w
=
A
&
LY
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0.2 1
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SlJ AS vs. Normal Classification: Comparisons

 QOutperformed a 10-yr experienced radiologist by 13.13% accuracy, 11.11% sensitivity,
15.00% specificity, and 13.06% ROC AUC. (Not statistically significant though.)

 Additionally, reimplemented related work using the dataset and showed ours to be

superior: Acc. (%) [Sens. (%)|Spec. (%)| AUC (%) | Params.
VGG16GAP Ensemble (Proposed)| 89.47 83.33 95.00 89.17 |14.7Mx 2
MLP with Hand-crafted Features [5] 73.68 712.22 75.00 73.61 37.1k

5-layer CNN [3]| 71.05 61.11 80.00 70.56 3.00M

Our retrained CT AS classifier model | 78.95 83.33 75.00 79.17 |[23.9Mx 2

— Meets or exceeds truth-related metrics.

— Likely faster than the MLP if a GPU is used for the CNN, considering the MLP requires generating 158
features, which would take non-negligible time.
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Full System Architecture

Extract Biyea Classify SlJs Take M
SIJs>II-.ﬁ (VGG16 GAP>) . ﬁe =
(YOLOV5) Il (AS=1, 00 If > 0.5, AS

Control=0) Else, Control
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Future Work
* Adapting our network and methodology to develop a

U
system that works with Ultrashort TE (UTE) MR imagery,

shown to be effective in early AS diagnosis [4] (Fig. 1.) Fig. 1. UTE (U) and conventional TIW MRI

 Developing a system able to extract Sl joint regions of (M 5L/ crops for early (lefi) and advanced
i . . (right) AS. Arrows indicate AS symptoms.
interest (Rols) from a patient CT scan without
manual input to bound the locations of Rols, similar to what was done for MR; this
would help develop a fully automatic erosion or AS detection system requiring only a
patient CT/UTE scan video as input.

Some parts from: Castro-Zunti, R., Park, E., Younhee, C., Jin, G., and Ko, S. "Early detection of ankylosing spondylitis using texture

features and statistical machine learning, and deep learning, considering patient age." Computerized Medical Imaging and
Graphics. 82.(2020). p. 101718 35
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Why is this important?

Ribs are the most common bones to be
fractured.

>66% of patients admitted to trauma centres
for chest trauma have a rib fracture
~12 of patients admitted with a rib fracture
will die as a result of their injuries

— 10% for young adults

— 22% for the elderly

Although it is relatively easy for a radiologist to
track and determine which of a human’s 12

. . Modified from
rle have fraCtureS; IOOkIng through 200+ CT https://shopeverydaymedical.com/blogs/home/broken-ribs-
scan frames can be tedious for a radiologist. braces-to-treat-injured-or-broken-ribs

— Would be useful to streamline this. .



Source Image Ground Truth U-Net

Rib Segmentation

* Via U-Net. Experimented with both
single-class (rib only) and multiclass (rib
and clutter).

* Experimentation with various
thresholding levels and morphological
operations when finalizing output
probability masks.




Rib Tracking

* Inputs are Rols found from the segmentation step.

* Custom computervision software and multi-object tracking system.
— Close to 2000 lines of Python code!

* |oU-and centroid-based tracking.
 Many applied heuristics pertinent to the way ribs move through a scan frame.

e Current best tracking model (with multiclass segmentation) achieves 45% correct
accuracy and 69% mostly correct (ribs 3-8 correctly tracked) over 98 patients.

Window Width=2050, Level=250 D Deep Learning Traditional Computer Vision
[ [
T T . ey N ; :
Mask via Post-proc. Region Rib vs. Clutter BBloU+Centroid Candidate

U-Net Thresh. Detection Classification Tracking Refinement
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Dataset Acute (Recent) Fracture: 2,546 Rols

Old (Healed) Fracture: 5,983 Rols

S N\ = ‘

Regular (No Fracture): 18,630 Rols

Various Anatomical Clutter: 7,122 Rols
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Rib Fracture Classification

Classful Norm. Confusion Matrix (Modified, Ours)

* We fine-tuned a variety of InceptionV3, ResNet50, o
and VGG16-based CNNs with 5-fold cross 3 o
. . . . L )
validation. Best was first 7 blocks of InceptionV3. @ 04
Classful Results = 0.2
Acc. Mac. Sens. Params.  Per-Crop Time (ms)
(%) (%) x 108 CPU GPU
Inception V3 Predicted label
accuracy = 96.00%
Modified 96.00 94.0 6.83 13.6 12.2
Binary Norm. Confusion Matrix (Modified, Ours)
Full 95.07 92.6 21.81 22.7 21.0
0.8
Binary Results 2 0.6
Acc. Mac. Sens. AUC Params. Per-Crop Time (ms) E 0.4
(%) (%) (%) x 108 CPU GPU " 0.2
InceptionV3
Modified 97.76 94.6 94.7 6.83 13.4 12.4 _
B Full 9721 922 92.1 21.81 99.4 20.5 e 4l

accuracy = 97.76%
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Combined Rib vs. Anatomical Clutter and Rib Fracture Classification

. . . 3500
 We fine-tuned a variety of InceptionV3,

ResNet50, and VGG16-based CNNs using 3000
6-fold cross validation. s # ’ *

. 2500

e Best model was first 15 blocks ResNet50.

_ OldA 25 1111 2 59

— Accuracy of 96.6% and macro sensitivity of 2 2000

94.8%.
~ Other{ 0 0 1407 17 1500

— When ran as binary (rib vs. other) Accuracy
of 99.5%, sensitivity of 99.7%, specificity of
98.8%, and ROC AUC of 99.2% over 5-fold Rib{ 10 15 15
cross-validation test set.

1000

'.@ :3:: & - 200
* 31% completely correct fracture © ° ol
.- . . Predicted label
classifications and 76% partially correct accuracy = 96.9370% 0
fracture classifications over 98 patients. (a)
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Example: (Red bounding box is predicted acute, blue is old, green is regular, grey is
non-rib)
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Current Status of Research

* Rib Tracking/Labelling:

— A brief paper about the clinical aspects of the work to date is being prepared by partnering
radiologists

 Rib Fracture Classification:

— A paper about the computer vision / deep learning rib fracture classification system has been
published.

e R. Castro-Zunti, K. Chae, Y. Choi, G. Jinand S. Ko, “Assessing the Speed-Accuracy Trade-Offs of Popular
Convolutional Neural Networks for Single-Crop Rib Fracture Classification,” Elsevier Computerized
Medical Imaging and Graphics, vol. 91, 2021, p. 101937.
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Future Projects

* Improve segmentation component.
— Tendency for false negative predictions especially in the smaller, latter-stageribs.
* Improve tracking component.

— Could develop additional heuristics or try to make some parts of the program simpler / more
streamlined.

— Could also possibly try training a deep learning- (rather than computer vision-) based tracker?
Previously thought to have lack of labelled data, but one could take the fully correct labelled
patient scans, extract bounding boxes, and train.

* Would have ~50 patients.
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Future Projects

* Improve fracture classification component.

— Could employ more sophisticated methods/models, have 2 models (one for fracture classification
and one for rib vs. clutter) rather than 1.
— Could design a heuristic/threshold for deciding fractures.
 E.g., rib X detected as acute 1 time vs. as 4 times?

— Additionally, tendency for false positive old samples in areas of rib region creation (bottom) and
destruction (top), and false positives on early- and later-sequence ribs.

* Probably best served using some selection algorithm for what rib Rols get predicted by classifier.

46



UNIVERSITY OF

Gout Classification from DECT Imagery SASKATCHEWAN

What is the problem?

Gout (tophi) is a uric acid accumulation that

can lead to massive swelling and inflammation.

— Can deteriorate joints, cartilage, and bone.

Dual-energy CT (DECT), introduced ~2010, was
shown to easily image tophi as green patched.

Though at first believed to be revolutionary,
later found that some green regions of interest
(Rols) can appear even in normal/healthy
patient DECT scans.

Would be useful to have a diagnostic model to
overcome challenges associated with these
false positive Rols.

From https://www.bestpodiatristnyc.com/what-is-gout-and-
foot-surgery-for-gout/
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Dataset

e 47 gout patients and 27 control patients.
e Extracted 10,912 gout Rols and 7,792 control Rols.

* First DECT gout image dataset to be used for machine learning purposes.

— Earlier work used structured patient records, not images [1].

* [1] Bahra, G., Wiese, L. (2018). Classifying Leukemia and Gout Patients with Neural Networks. In:
Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information
Science, vol 903. Springer, Cham.
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. . . Apply Green Mask
TOphllArtlfaCt DEtECtIOn (G-channel dominant, Get Foreground (FG)

R- and B- > 0.5, (Low binary threshold,
Input Image R- and B- < G + 0.02) Morphological ops.)

* Because tophi/artifacts appear green
in DECT, designed a computer vision
algorithm to crop (with a small
padding) regions of green.

* Ignored false positives at the edge of
the appendage via a technique that
looked at the % background in a Rol’s
bounding box.

e No clear method to remove sidebar if
present.

— Presumed that a radiologist could do this

manua”y- Possible computer vision Draw Bounding Boxes Remove False Positives Final Rol
future work project. Over FG Remove bounding boxes Detections
(With 2px margin) where = 25% is background
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Tophi vs. Artifact Classification

* We fine-tuned InceptionV3, ResNet50, and VGG16-based CNNs.

e Because size of Rols is variable, trained 3 models per
architecture:

Tue label

— Small, medium, and large, based off area-size quartiles over the dataset.

* Per-patient dataset split based on large area-size quartile
(because large had fewest cropped samples). Highest 6-fold
cross-validation validation accuracy/AUC for each area-size
dataset was VGG16 trained with global average pooling.

* Trained traditional ML classifiers using general patient features.

— 7 features: # boxes found, % boxes in each area-size dataset, % Rols
predicted as gout in each area-size dataset.

* Best was linear SVM. Per-patient cross-validation test results:
— Accuracy 91.89%, sensitivity 87.23%, specificity 100%, ROC AUC 93.62%.

Confusion Matrix

Gout

Control

= N

) &

& &
&

Predicted label
accuracy=0.9189; misclass=0.0811

Receiver operating characteristic curve

10

08

Tue Positive Rate

0.2

= ROC curve of class Gout (area = 0.94)
0.0

0.0 0.2 04 0.6 08 10
False Positive Rate 50



Future Work

* Improve Rol detection.

— Seems to already work decently, but one could
try a deep learning approach, or to develop a
component to automatically remove sidebars
when present (right image).

* Improve classification CNNs or final per-
patient prediction algorithm.

— Could employ more sophisticated
methods/models, investigate an ensemble of

methods/models, etc.

W. Yoo, E. Park, D. Lee, R. Casto-Zunti, S. Ko and Y. Choi, “Solving the
Final Puzzle of Gout Detection in DECT via Machine Learning-Based
Mitigation of Pseudolesion-Related Challenges: Enhancing Diagnostic
Accuracy” accepted to ACR Convergence 2023
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* Angiography refers to blood (etc.)
vessels. There are techniques to capture,
segment (in orange), and develop 3D
reconstructions of vessels (right).

* However, when conducting surgery, a
surgeon must locate an optimal
viewpoint wherein the visibility of the
vessel of interestis maximized.

— Time consuming, especially where there is
potentially critical surgery to be performed!

* A program that could process all images
across all the system’s rotations and
angles and automatically find the
maximized visibility would be invaluable.




Get Convex
Methodology Orange Line Get Line Hull Area
From PPT Redrawn (Pink) Mask (Max = Best?)

 We are presently
experimenting with
functions based on the
convex hulls of the
segmented lines.
— Traditional computer vision. R :
* Research is still relatively = O ks O 5o
preliminary.




Future Work 01803291

DCT Body Clear Nat Fil...

XA

* Continue developing system, integrating
more components, refining, etc.

— Would like to incorporate aspects like “tip”
(magenta) vs. “branch” (cyan) maximization,
and possibly use information about “holes” in
the line segmentation to determine
undesirable vessel cross-overs.

 Work with radiologists to develop a
metric.

— E.g., weight of “best” viewing rotation+angle
vs. a nearby rotation+angle.

e Possibly (if we can get a sufficiently large
annotated dataset) integrate some form of =t

machine/deep learning to the project.

JEONBUK NAT.UNIV.H...
VD11E 210628
HFS
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Using a Low-Cost Electronic Nose

Entities throughout the world face the problem of detecting hidden explosive
devices where human and canine inspection might not be a viable solution.

The goal is to develop a fast and light-weight classification model to be used in an
electronic nose to identify very small concentrations of explosive substances
(Gunpowder and trinitrotoluene), by means of deep learning.

149 samples were taken, combining TNT or gunpowder with either soap or
toothpaste, or acquiring raw samples of those substancesin amounts ranging from
aslowas0.1gto2g.

For the classification problem, five models were evaluated: k Nearest Neighbor,
Support Vector Machine, Random Forest, Convolutional Neural Network and Long
Short Term Memory.
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Using a Low-Cost Electronic Nose

 The goal is to develop a fast and light-weight classification model to be used in an
electronic nose to identify very small concentrations of explosive substances
(Gunpowder and trinitrotoluene), by means of deep learning.

149 samples were taken, combining TNT or gunpowder with either soap or
toothpaste, or acquiring raw samples of those substancesin amounts ranging from

aS IOW aS O. 1 g to 2 g. Pneumatic block : %Sep:slng chamber
i ] &
[ . . ° & , sﬁ” ki F
* For the classification problem, five models 898

were evaluated: k Nearest Neighbor, Support
Vector Machine, Random Forest,
Convolutional Neural Network and Long Short

Term Memory. =L «
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The Final Model

* Itimplementsan LSTM modification of a LeNet model, already proven to work in gas
classification.

* It maintains good accuracy with only 30 seconds. The samples captured data during 6
minutes. This speeds up detection and reduces model size.

Accuracy vs. data lenght

Input LSTM 1 LSTM 2 FC1 FC2 | i
100

% |
m, AN \
m NN

] —e— kNN

—— SWM

60 D e——— —— RF |
| o f

—— CNN
—— LSTM
] Il

Accuracy [%]

Conv 1l Max-pooling 1

300x6

149x20
508x20 LSTM cell

50

T T
300 240 180 120 60 30 20
Time length of the data [s]

J. Torres-Tello, A. V. Guaman and S. Ko, 2020. “Improving the Detection of Explosives in a MOX Chemical Sensors Array with LSTM
. Networks,” IEEE Sensors Journal, Vol. 20, Iss. 23, pp. 14302-143009. 57
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Ensemble Learning for Improving Generalization in Aeroponics Yield Prediction

e Aeroponic process can grow 30% more food up to 3 times faster than traditional
methods, using a fraction of the water and land.

* Three ML models have been implemented and evaluated: SVM, RF, and NN.

* The last two gave good results, and were used to create an Ensemble predictor for
vield, that increased the accuracy of the predictions.

* Six crops were evaluated, with an
average R”2 value of 0.81 over
the complete dataset.

Aeropod (Farmboys) is a system that
allows total control of variables, and
records data of crop production.

J. Torres-Tello, S. Venkatachalam, L. Moreno and S. -B. Ko, "Ensemble Learning for Improving Generalization n Aeroponics Yield Prediction," 2020
IEEFE International Symposium on Circuits and Systems, Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181283.
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Interpretability of Al Models that use Data Fusion to Predict Yield in Aeroponics

* This work has two main goals: (i) use data fusion to improve yield prediction in
aeroponics, and (ii) find which features are more relevant for yield prediction of six
different crops.

 To reach these goals, a number of artificial intelligence models and an interpretability
analysis based on Shapely Additive exPlanations (SHAP) have been implemented.

* The models were trained Crvironment Mo
u S i ng 200 Sa m pIeS th at Room Temp 4:12:53 PM MDT Roi)r_n Humidity - Ro_or_n VPD

were collected for almost a T T T L] L

=2 =22 2222 =2=22222=22=22:=2
llllllllllllllll

year, including information
from different air and | roomces
water quality sensors -
besides manually recorded  egzzzzzizzzzzeze  zzezezzizzzzizzze
data.

b A TS T T B o o R O N A I e B b A T S A B o o A o B B R L e
b0~ ©® S A A4 N ¥ 65N 8 NN W N ©® S A4 A4 & F 6 N 8 8 N N

59



UNIVERSITY OF

Yield Prediction in Aeroponics (ongoing) SASKATCHEWAN

Interpretability of Al Models that use Data Fusion to Predict Yield in Aeroponics

Crop type

e Qur models reached a coefficient of

Room VPD

determination value R? = 0.752 for the e
validation dataset in the best case (CNN-based
model).

Room Temp

e As a result, two main features were identified

Days in tray

in the dataset: Room CO, and Reservoir ishd S N R R

Te m p e rat u re mean(lSHAP.value\] (avetlage impact on model output magnitutl:l.e)
L]
e . be @

* SHAP values also provided important
information for feature selection. These
results could be the first steps towards the full
automation of an aeroponics crop production
system.

] 10 20 30 40 50
SHAP value (impact on model output)
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Transfer learning from RGB to HSI by means of pointwise convolutions

* A commontechnique for small datasets is the use of pre-trained
models.

* However, the availability of such models is mainly in the RGB
image domain. Therefore, this work explores the potential of
pointwise convolutions to adapt the higher number of channels
in HSI (150) to match the dimensions of a pre-trained VGG-16
model (3 channels).

* By using this technique, we could train a model that predicts the
moisture content of canola plots.

* The developed DL algorithm over the test dataset resultedin a
R? of 0.77.

20x20x150

20x20x3

20x20x1

Julio Torres-Tello, Keshav D Singh, Seok-Bum Ko, Steve Shirtliffe, "Transfer Learning from RGB to Hyperspectral Images

by means of Pointwise Convolutions", 5" Annual P2IRC Symposium, 2020, Winner of Best Poster Competition. -
-
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Identifying Useful Features in MSI with DL for Optimizing Wheat Yield Prediction

12x 200 x 100 x 5
POOLING 3D

A DL based approach for optimizing the yield
prediction process of spring wheat, using
multispectral images. 3x47x22x128

5x98 x48 x 64

 We assessed both the temporal features to find 2 %20 %8 256
the most valuable time to take images, as well as
the contribution of spectral bands.

1x7x1x512

POOLING 3D

512

* The most crucial flying times for
acquiring images were at late-heading, late-
flowering, dough-development, and harvesting -
stages.

OUTPUT

qqqqqqqqqqqqq

 The two most useful colour-bands for yield
prediction were red and red-edge. L e B RS

J. Torres-Tello and S. -B. Ko, "Identifying Useful Features in Multispectral Images with Deep Learning for Optimizing Wheat Yield Prediction," 2021 [EEE
International Symposium on Circuits and Systems, 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401360.

500 1000 1500
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A Novel Approach to Identify the Spectral Bands that Predict Moisture Content in

Canola and Wheat (ongoing)

* Moisture content prediction is relevant for assessing the degree of maturity of a crop,
which relates to efficient harvesting and quality control.

* Anaccurate DL model for the prediction of the moisture content of canola and wheat
crops, based on hyperspectral images taken by several drone flights.

* The modelincludes a final ensemble of two branches for analysis of spatial and

spectral features, and it reached a coefficient of determination of 0.916 and 0.818 for

the canola and wheat test datasets, respectively. |

IIIII Bidirectional LSTM (3 blocks)

HSI sample

w Spectral
Spatial

SHAP

| - spectral
- spatial

Hx W x 150
VGG-16

iy Pre-trained model
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A Novel Approach to Identify the Spectral

* SHapley Additive exPlanations
analysis allowed us to study the
individual predictions of the models

Using this approach actually obtains
the spectral bands that

are important for this task, since
they are similar to PCA results, and
they fall on the NIR part of the
spectrum, which is widely used in
moisture measurement of
agricultural products and vegetatior
analysis.

J. Torres-Telloand S. Ko, 2021. “A novel approach to identify the
spectral bands that predict moisture content in canola and
wheat,” Biosystems Engineering, Vol. 210, pp. 91-103.

Bands that Predict Moisture Contentin Canola and Wheat
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Brassica Carinata Emergence Object Detection and Counting Y o

A pipeline for Brassica Carinata Emergence counting developed in partnership with
Computer Science and Plant Science for P2IRC.

It is slow, tedious, and prone to error to count manually. Counting is valuable for yield,
and thus is important to farmers and crop phenotypers.

- :

- ) $l \ v . . NP ‘ ) ' : \ 97, l
¢ T ) (» b ! b i Y -
: y '/ f . v N & ‘
_ o / , g .
|\ - / 'e | \ 3 £ \

DETECTION

COUNTING 3 + 2 % 5 g3 2

®

Leyeza, B., Seidenthal, K., Aziz, S., Castro-Zunti, R., Molahasani, M., Stavness, |., Ko, S., Vail, S., and Eramian, M. (October 2019)

“Clump it up!: clump-based emergence counting of brassica carinata.” Poster presented at the (International) 4th Annual P?IRC
=- Symposium, Saskatoon, SK. Winner of Best Poster Competition. o2



Brassica Carinata Emergence Object Detection and Counting Y o

Used combinations of 6 object detection methods paired with 12 counting methods.

Object Detection part example.

Example of 1 row divided into 2 parts.
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Results for object detection.

Best Scores Per Model | F1-Score Train. Augs. Dice Similarity Train. Augs.
SSDlite + MobileNetV2 | 0.761 |FER,Z,B,C,H,S 0.820 FR,Z B,C H,S
SSDlite + ResNet | 0.788 E R, Z 0.849 FR,Z,B,C H,S
YOLOv3 | 0.791 FER,Z, B,C,S 0.038 EFER,Z B,C
U-Net | 0.723 ER,Z B,C,S 0.847 FER,Z B,C,H,S

Results for best models of the 72 models tried.

Detection Model Counting Model Abs. CountDiff

YOLOvV3 Simple CNN (Synthetic) 5.4729 0.6997
SSDlite + MobileNetV2  Simple CNN (Synthetic) 5.6103 0.1225
Faster R-CNN Encoder CNN (Real) 5.7497 1.8893
Faster R-CNN Simple CNN (Synthetic) 6.0872 3.8450

e AbsCountDiff - absolute difference between the predicted and true total number of plantsin a row
e CountDiff — The difference between the predicted and true total number of plants in a row
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Deep Learning for License Plate Localization and Recognition AT

Automatic license plate recognition (ALPR) is fairly easy for humans, but difficult for
computers—especially when plates are blurry, skewed, partially occluded, over or
underexposed, etc.—because standard image processing techniques to locate a license
plate amongst a complex background, and recognize the characters on the plate, fail.

The Problem The Goal

Finding theplate

GPJ442
in complex -
background

(©)
Different obstructions on license plates in images from the NTUA
Medialab dataset. (a) Rotated, Underexposed Plate. (b) Blrry,
Overexposed Plate. (c) Skewed Plate. (d) Partially Shadow-coverea

- Plate. 68
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Deep learning can help for both localization and recognition! We use a MobileNet-like
architecture: a modified SSD object detection network with linear bottlenecks and depth-
separable convolutions (most important) for speeding convolution with negligible accuracy
loss. X #

>

‘Boulcm:cchL ‘ Max Pooling ' Box Predictor ' Concatenate 'BatchMulh(lass

Fig. 2. Architecture of our license plate localization method. This network is based on Single Shot MultiBox Detector, but differs in that
our architecture uses depthwise separable convolution, as opposed to standard convolutions, and layers of linear bottlenecks with inverted
residuals. Note that the bottleneck layers contain the depthwise separable convolutions, which are comprised of a depthwise convolution
followed by a pointwise convolution. Car images from the Caltech dataset.

Yépez, Juan; Castro-Zunti, Riel D.; Ko, Seok-Bum: 'Deep learning-based embedded license plate localisation system’, IET Intelligent
Transport Systems, 2019, 13, (10), p. 1569-1578, DOI: 10.1049/iet-its.2019.0082IET Digital Library, https://digital-

- library.theiet.org/content/journals/10.1049/iet-its.2019.0082 69
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Depthwise Separable Convolution (DSC)

« A DSCis a two-step process involving
a depthwise convolution followed by
a pointwise convolution [1], [2]. A
depthwise convolution performs
filtering over multiple channels
while allowing the channels to
remain separate [2]. DSCs (right)
reduce computation compared to
standard convolution (top left) by a
factor of k?d/(k? + d), where kis the /= i
kernel size and d; is the dimension of =
the output channel layers
(computational savings graph

bottom left). ]
1 50 100 150 00 250 70

- Humber of Output Channels

Number of Paramet
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We trained/tested the localization system on license plates from 3 public datasets
(Caltech Cars [American], NTUA [Greek], and University of Zagreb [Croatian]). Accuracy:

Comparison of license plate localization algorithms on the Comparison of license plate localization algorithms on the
Caltech Cars 1999 (rear) 2 dataset University of Zagreb plate detection, recognition, and

Description of COITB.C t Processing Time gutomated Storage dataset
. Detection
System/Algorithm o, Per Image (s) Correct
Ours 8.4 0.02 Description of Detection Processing Time
Faster R-CNN for vehicle 98.39 None given System/Algorithm o Per Image (s)
detection + CNN Classifier [ 3 ] /0
Faster R-CNN + RPN [ 4 ] 98.04 0.279 (estimated) Ours 97.83 0.02
Line Density Filter + SVM- 91.27 <0.042 (estimated) Corner-point Detection + Linear 92.8 0.12 (estimated)
based Classifier [ 5 | Discriminant Analysis-based
Feature Exfraction + 84.4 7.19 Classifier [ 7 ]
Principal Visual Word [ 6 ]
Comparison of License Plate Localization Algorithms on the NTUA Medialab LPR Database
. 0 )
Description of Correct Detection Percentage By Set # (%) Correct PTYQCGS;)Ing
System/Algorithm Detection % Hme rer
1 2 3 4 5 6 7 8 Image (s)
Ours 100 100 100 100 100 100 100 99.37 99.8 0.02
Morphological Operations [8] 100 100 100 97 100 100 100 95.65 08.45 0.02
Connected Component Analysis [ 9]  92.02 8248  88.73  87.24 74 90.84 N/A N/A 89.45 (sets 1 0.035
through 6 only)
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We tested the localization system using Saskatchewan (Canadian) License Plates.

* We used a low-cost embedded system

— Raspberry Pi 3 with a quad core 1.2GHz processing power chip and 1 GB of RAM.
— Intel Neural Compute Stick 2 (NCS2)
* Enablesa CNN to be deployed on a low-power chip for real-time inference
* No connectionto the cloud or large processing server
* Allows 1 trillion operationsper seconds (TOPS)
— Samsung S5K2L1 camera
e 12 MP resolution and a sensor of 1.4 um
* 1/2.6" and 10x optical zoom was used
* 60 FPS video streamed to the Raspberry Pi 3.

* 99.77% localization accuracy over 898 vehicles.

* The system can run at an average of 13 FPS.
* Multiple plates can be localized in the same frame.
* https://www.youtube.com/watch?v=7eyfGCW_UwQ
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We trained the recognition system on Californian license plates from the Caltech Cars
and UCSD-Stills, with dataset augmentations via the following image
transformations:

Equalizing the histogram of the Y Horizontal motion blurring
channel in YUV color space

Greyscale representation (V Greyscale Binarizing (Otsu’s
channel in HSV color space) representation (OpenCV Thresholding), and its
BGR2GRAY) inverse binarization

73
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We used OpenVINO to accelerate the recognition model onto a Raspberry Pi 3 + NNA
(specifically, Neural Compute Stick 2) hardware platform.

OpenVINO performs static model analysis and redesigns a

£
D{ | ,‘ } deep learning model for optimal execution on a target device.
xml . It consists of two parts: the Model Optimizer (MO), and the

ope}l:\i?mo Inference Engine (IE). OpenVINO creates files for an
Intermediate Representation (IR) using the MO, and the input
v to the MO is the network model trained using Tensorflow.
ﬁ The output of the MO is a model optimized for execution on a
specific Intel CPU, GPU, VPU, FPGA, or a combination thereof.

The MO optimizes the model via the following mechanismes:
e Pruning extraneous model components that are required at the time of training, but not at the time
of inference.

e Fusing operations. Some multiple operations can be combined into a single operation, and the MO
detects such operations and fuses them.

e Bit-width reduction of weights (from 32-to 16-bit floating point) for compatibility with NCS2.
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Results of our work, and against others’ works:

Comparison to other academic works by dataset

Per-Character OCR

Accuracy (%) Processing Time Per- Size of Dataset

Work Used in Training Parameters
Image (ms) P
Caltech Cars UCSD-Stills rocess
Ours 96.23 99.79 14 ms 2,845 plates, or Approx. 3.4
(CPU+OpenVINO) > 19,000 chars. M
Modified YOLO 96.1 (without 97.3 (without Approx. 14 ms (high- 6,205 plates Approx. 3.1
[10] heuristics) heuristics) end GPU) M
7-layer CNN [11] 94.28 N/A None given > 90,000 plates U“Cif;;;mm
Curve Joining +
. Approx. 368,000 Approx.
i, 12
6-layer CNN [12] 94.8 N/A None given chars. 690,000

R P e o 9 t ."-'j’ a9/ aq

o dq 5o 59§49 '5o. 59 ’ ot B 99
- ' : || || | |
nés - :

Castro-Zunti, Riel D.; Yépez, Juan; Ko, Seok-Bum: “License plate segmentation and recognition system using deep learning

and OpenVINO. IET Intelligent Transport Systems, 2020, 14, (2), p. 119-126, DOI: 10.1049/iet-its.2019.0481 IET Digital

Library, https://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0481
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Current Work

Use OpenVINO (or another acceleration method) with localization research

Future Work

Expand plate recognition research to more use cases / jurisdictions

Develop end-to-end system by combining both localization and recognition
and retraining

Deployment of system(s)
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General Objective

* A 3-year project to produce a low-cost fast
edge microcontroller-based system that
receives camera input and processes it to
extract relevant information, including the
following:

* License plate number (see previous slide section)
 HAZMAT decal’ (current work)

* CVSA inspection sticker? (current work)

e USDOT code? (future work)

* V\ehicle Axle Spacing* (future work)

* |n partnership with International Road LY
Dynamics through a MITACS Accelerate Grant.

sMinacs 1
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.
-
HAZMAT Detection and Classification ild
TABLEIN INTERMATIOMAL
* 2229 HAZMAT placards over 1864  iocusimor socrasmcanor quamroresmss xmacms ROAD BTAMS e
images mostly captured from a Operscr G Chamels Ko Swde
Conv2d+RELTTE N/A 32 w3 2
U.S. vehicle check stop. Twker S0y w1
] Fused - 16 3x3 2
* From MobileDet EdgeTPU [1] we Fused: i 1 1 s
developed a novel architecture Fued 5 10 %5 2 oa
Fused* E=4 40 EEX 1 @
trained quantize-aware (INT8) and Fused* B I S - L
with a custom piecewise cosine e s o se 1 &7
. . Fused* E=4 72 3%3 1 o1
decay learning rate function. Fused: £ 2 R I
. BN* E=8 96 3%3 1 o 0 50000 100000 150000 200000250000
* We implemented the modelon a IBNY B 12055
low cost (5115 USD) Raspberry Pi 4 sl A 28 s 1
I[BN* E=§ 128 EEX 1
and Google Coral USB Accelerator BT E=s 354 ws 1
* denotes the block uses a skip connection between its input and oufput
ed ge Syste m. 7 denotes the block’s oufput is an endpoint into the 8 8Dlite architechure

Castro-Zunti, R., Yépez, J., Choi, Y., Johnson, T.,, and Ko, S. “Real-Time Deep Learning-based HAZMAT Detection

M 't acs and Classification Edge System.” submitted to Springer Multimedia Tools and Applications: 16 pages 0
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neadl 1809

Object detection model 1: I Crop Object detectio Sequence

Detection and HAZMAT model 2: 1 sificatio

& >
: : . Detection and 1 cognitio
= resize.
classification identificatio: mode! l

"l

HAZMAT Detection and Classification

 QOver 15 HAZMAT classes, achieved 85.0%
MAP@0O.5.

e System achieved 104.49 FPS on a Jetson
Xavier and 30 FPS on Jetson Nano.

e Compared to a previous work [2] on an 8- i
class public dataset (on which we transfer
learned our model) ours is 21-91% faster
and generally more accurate (average of
98.8% F1-score vs. 82.5% accuracy).

* Our model works despite unideal lighting,
plate skews, and complex backgrounds.

INTERNATIONAL
ROAD DYMNAMICS INC.
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CVSA Detection and Recognition
» 2 stage object detection system

developed by modifying MobileDet
EdgeTPU [1] (baseline).

— Stage 1 detects windshield, decal, and
classifies decal colour. For better small
object detection, 14% more parameters
than baseline.

— Stage 2 detects and classifies year digit
and corner cut. Because easier task, 17%
less parameters than baseline. If 3-7
decals found <30 frames from each
other, use them all with majority vote.

* Models implemented in parallel on
variety of edge computing /
accelerator hardware.

T
TABLE | FIRST STAGE BACKBONE. ird
Input Layer k e n r S O
3202x 3 Conv 3%3 N/A 1 0 2 INTERMATIOMAL
ROAD DYNAMICS INC,

160°x 32 Tucker 33 0.25-0.75 | 1 0 ! TABLE | SECOND STAGE BACKBONE.
160°x 16 Fused 3x3 | 8 1 0 2

Input Layer k E S
80%x 16 Fused 3x3 | 4 1 1 1 320°% 3 Conv 3 | NA 5
80°x 16 Fused |33 |8 t ]t 1602 x 32 [Tucker | 3x3 | 025-075 | 1
802 16 Fused 3x3 | 4 1 |1 |1 1602 16 Fused 3 | 8 ?
802x 16 Fused 5x5 | 8 1 0 2 80%x 16 Fused 5x5 | 8 2
40%2x 40 Fused 3x3 | 4 3 1 1 402 x 40 IBN 3x3 | 8 2
40%x 40 IBN 3x3 | 8 1 0 2 20%x 72 (C4) IBN 5x5 | 8 1
202x 72 IBN 3x3 8 1 1 1 20°x 96 (C5) IBN 5%5 8 2
20%x 72 Fused 3x3 4 2 1 1
202x 72 IBN 5x5 8 1 0 A A
202x 96 IBN 5x5 8 1 1 1
20?x 96 (C4) IBN 3x3 8 2 1 1
202x 96 IBN 5x5 8 1 0 2
102x 120 IBN 3x3 8 1 1 1
102x 120 IBN 5x5 4 1 1 1
102x 120 IBN 3x3 8 1 1 1 :
10°x 120 (C5) | IBN 5x5 | 8 1 |1 |1 4 .fg

Yépez, J., Castro-Zunti, R., Choi, Y., Johnson, T.,, and Ko, S. 2021. “Real-time CVSA

Decal Recognition System Using Deep Convolutional Neural Network

=Mnacs
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Al Hardware accelerators

* To assess the real-time suitability of our
proposed system, we tested the following
implementations of each custom model:

— On the RPi4 alone, using TFLite.

— On the RPi4 + NCS2 using OpenVINO'’s IR files.

— On the RPi4 + Coral USB Accelerator using TFLite.

— On the Jetsons (Nano and Xavier) using the
converted TensorRT files.

* The figure shows the GStreamer pipeline
used for the system. GStreamer can reads
frames in different formats and even from
different sources in parallel, process them,
and export them to a file or stream them

over a hetwork.
=WInacs
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CVSA Detection and Recognition

ﬁa

TABLEIII
SUMMARY OF MODEL TRAINING AND RESULTS RO AL .
Input S mAP@0.5 mAP@0.3
Model Image %‘;ﬂs Pm@ﬂm F’éf{salfﬂ Stage One  Stage Two (%)
(WxHx3) (“a) Single  7-spots
SSDLite+MobileDet EdgeTPU [1] 320=320 1.53 420 5.04 06.0 100 100
SSD+MobileNetV1 [3] 300=300 1.20 0.80 5.52 808 04 3 037
SSDLite+MobileNetV2 [4] 300=300 0.80 430 4.71 021 06.0 06.3
Proposed Stage One Model 320=320 1.77 4 80 520 07.5 — —
Proposed Stage Two Model 320=320 0.38 3.47 1.44 — 100 100
TABLEIV
HARDWARE ACCELERATOR BENCHMARE
stage one Stage two
Device Price Bits Pre-process  Inference  Post-process  Pre-process Inference Post-process FP5*
UsD (1n3) (ms) (ms) (ms) (ms) (ms)
NVIDIA Jetson Xavier (TRT) S600 FP16 230 7.94 223 2.11 6.16 2.15 81.90
Coral USB Accelerator 560 INTS 435 7.64 4.45 488 5.01 3.89 60.83
NVIDIA Tetson Nano (TET) $00 FP1o 3.50 206 3.10 338 239 206 2762
Intel NCS2 569 FP16 5.85 2019 545 5.34 2808 472 2470
NVIDIA Jetson Xavier $600 FP32 475 48.75 35l 431 3001 318 17.54
Intel NCS $40 FP1o 6.19 107.06 3.73 3.56 88 48 4 86 543
NVIDIA Jetson Nano 569 FP32 6.87 105.21 6.54 6.25 84 85 5.78 8.37
Raspberry Pi 4 (TF Lite) $55 FP16 6.51 144 57 501 5.87 12048 5.10 6.37
Raspberry Pi 4 §55 FP32 2.07 260.26 845 834 218.70 7.19 3.60
® * The stages run in parallel, the speed is limited by stage one which is slower 83
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Future Work ild
 Develop remaining deep learning application modules (NTERNATIONAL
— USDOT
— Vehicle Axle Spacing

* Package modules togetherin an edge hardware-optimized system

sMIntacs .
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Face Super-Resolution with Deep Learning W s oA

MSG-CapsGAN: Multi-Scale Gradient Capsule GAN for Face Super Resolution

* First CapsGAN for Super-Resolution
* Using MSG-GAN for Super-Resolution for the first time

High resolution High resolution
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MSG-CapsGAN*: Multi-Scale Gradient Capsule GAN for Face Super Resolution

» Better Peak Signal to Noise Ratio (PSNR) than state-of-the-art

e Without using any attribute domain information

Method PSNR SSIm

Bilinear 20.85 0.574

VDSR [1] 22.96 0.652
Progressive [2] 22.66 0.685
Proposed MSG-CapsGAN 23.35 0.673

* Majdabadi, Mahdiyar Molahasani, and Seok-Bum Ko, “MSG-CapsGAN: Multi-Scale Gradient Capsule GAN for Face
Super Resolution,” 2020 International Conference on Electronics, Information, and Communication (ICEIC), 1EEE,
2020.
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MSG-CapsGAN for multi-scale SR

e Use the error of all scales (x3,x4 x8) for tainting  original  128x128  64x64  32x32 input

* lGen
Original 128x128 64x64 32x32 input

. lle- = content loss of i X i generated image
> VGG19 - Feature Vector § psnr = 25.355462 - ssim = 0.828645

generated Two examples of the generator’s outputs

= adversarlal Ioss

Ground truth

s VGG19 =
- la Feature Vector &
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Robust Face Super-Resolution™ SN

e Surpassing the state-of-the-art systems in terms of PSNR, Structural SIMilarity (SSIM), Multi-Scale Structural
SIMilarity(MS-SSIM), and Feature SIMilarity (FSIM)

e Outperformsthe state-of-the-art face SR system in robustness

Concatenate 128x128  128x128

16x16
128x128 128x128

64x64

6464

32x32

16x16 E

Generator

e Multiscale super-resolution

Sundwes dny S

Sundureg dn

Introducing Feature SIMilarity (FSIM):

/(f1—f2)2
Cx__IV_

FSIM = e f2
Where C = 0.3, f is the feature vector extracted form VGG16

| wonnjosai yRIH

CapsNet

128x128 128x128

32032 64x64 128x128 ' Discriminator
1,

and N is the length of this vector.

Proposed Residual Generator Proposed MSG-CapsGAN
Bilinear 20.75 0.574 0.782 0.5320

Progressive Face SR [1] 22.67 0.687 0.908 0.6374
VDSR [2] 22.96 0.655 0.887 0.6103
MSG-CapsGAN 23.35  0.673 0.899 0.6371
Proposed Patch GAN 23.64 0.717 0.927 0.6788

Lowresolution bilinear state-of-the-art ~ proposedmodel groundtruth

Proposed VGG-Residual 23.53 0.719 0.929 0.6918
*Majdabadi, Mahdiyar Molahasani, and Seok-Bum Ko, “Capsule GAN for robust face super resolution,” Springer Multimedia
Tools and Applications,79, 31205-31218 (2020).
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Occult Fracture Detection (in progress) e oy

Multi-stage Transfer learning for dealing with limited available samples

* Using multi-stage transfer learning paradigm
 Start with more general problem

* Fine tuning the model on the smaller datasets

Occult fracture
detection

Abnormality Large fracture

detection detection

* Mura dataset [3]

e Hand, Forehand,
elbow, and fingers

® 20K samples

¢ Occult knee
fracture

® 500 samples

e Knee large
fracture

e 1-4K samples

J

Proposed Workflow
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Erosion Detection in Pipeline (in progress) e s

Erosion Localization and Severity Detection Using Deep Learning in the Time and
Frequency Domain

* Detect the existence of the erosion based on the peruse in the pipe P(t)
* Localizing the thinned area

* In both time and frequency domain

Time domain model

Frequency domain model
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An LSTM-based interconnected architecture for the classification of grasp types

using sEMG signals

Recently, studies show Deep Neural Networks could
obtain surface electromyographic (SEMG)
signal features in their internal architecture and use
them directly over a classification task, avoiding all pre-
processing steps and improving the obtained accuracy.

The currentstudy proposes a deep architecture based
on LSTM Networks for the classification of 6 grasp
types as an end-to-end deep model approach, working
with raw surface electromyographic signals.

Fully-Connected
Layer 2

Fully-Connected
Layer 1

Bi-LSTM
Layer3

Bi-LSTM
Layer 2

Bi-LSTM
Layer 1

Input Sequence
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Softmax Output
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An LSTM-based interconnected architecture for the classification of grasp
types using SEMG signals

];a Classification accuracy of 99.12% was obtained and compared with previous studies which use different machine learning techniques over the same
dataset.

@ Results obtained showed that our model's architecture improves previous results as well as provides a robust solution avoiding overfitting, with an
F1-score higher than 99% for all grasp types.

Reference Number of  Feature extraction Depth Classification  Accuracy
Study channels' method? Neural Layers method (%)
Reference 5 ID-CNN 6 Dueling peep %35
[18] Q-learning
Reference | ID-CNN 4 Sot}?\.d‘ax 94.94
[ 19] classifier
IecibRene 1 ID-CNN/LSTM 5 S 98.8
[25] classifier
e 2 2D-LSTM 4 s 99.13
proposed classifier

_' The dataset contains 2 channels information.
% The denomination “#D" refers to the dimension used at the indicated layers.
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An LSTM-based interconnected architecture for the classification of grasp

types using SEMG signals

Fold 1 - Accuracy: 99.44%

* The proposed model was ;
cross-validated over 5
subjects and the results
show an improvement of "

TRUE

the average accuracy .
presented in previous
studies by at least 0.33%. A A

-

PREDICTED

Fold 4 - Accuracy: 98.89%

* Confusion matrixes are
presented to show the
low percentage of errors o

0

. . A
obtained  with our o
[
=
model.
s‘?‘@\i&
<«
) NS " "8
C¢§\\\ch° \)‘00\_ \)&do\ Qo\&b\ SQ\&‘:@ P
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Fold 2 - Accuracy: 100%
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Fold 5 - Accuracy: 98.33%
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PREDICTED

TRUE

TRUE

Fold 3 - Accuracy: 99.44%

\ 7
N & N R %
RN S
PREDICTED

Average Accuracy: 99.22%

o 0
N ¢ N Q& o «
PREDICTED
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An LSTM-based interconnected architecture for the classification of grasp

types using sEMG signals

* Receiver operating characteristic (ROC) curves were obtained for each training fold to better visualize the
optimization of sensitivity versus specificity for our implementation.

10
08
o 06
&
2
.‘5.
&
o
= 04
Fold 1 Fold 2 Fold 3
= Cylindrical (AUC:1.00) —— Cylindrical (AUC:1.00) —— Cylindrical (AUC:1.00)
02 ~ Hook (AUC:1.00) ~ Hook (AUC:1.00) ~= Hook (AUC:0.98)
- Lateral (AUC:1.00) = Lateral (AUC:1.00) - Lateral (AUC:1.00)
= Palmar (AUC:0.98) = Palmar (AUC:1.00) - Palmar (AUC:1.00)
—— Spherical (AUC:1.00) —— Spherical (AUC:1.00) —— Spherical (AUC:1.00)
—— Tip (AUC:1.00) —— Tip (AUC:1.00) —— Tip (AUC:1.00)
0.0 4 - Random Guessing - Random Guessing - Random Guessing
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False Positive Rate

Tue Positive Rate

o
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o
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- —

Fold 4 Fold 5§

—— Cylindrical (AUC:1.00) —— Cylindrical (AUC:0.98)
~ Hook (AUC:0.99) ~= Hook (AUC:1.00)
- Lateral (AUC:1.00) - Lateral (AUC:1.00)
= Palmar (AUC:1.00) = Palmar (AUC:1.00)
- Spherical (AUC:0.98) —— Spherical (AUC:0.98)
—— Tip (AUC:1.00) —— Tip (AUC:0.98)

- Random Guessing - Random Guessing

00 02 04 06 08 10
False Positive Rate
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An LSTM-based interconnected architecture for the classification of grasp
types using SEMG signals

* A graphical representation in two dimensions (t-DSNE) presents errors for grasp classification related to Hook,
Tip, and Palmar grasps. Yet, most of the samples are well grouped which also conveys to the high accuracy
obtained by our model.

Spherical

40 4
=

Lateral
H Errors

Cylindrical
Tip

Hook
Palmar

$n

-30 -20 -10 0 10 20 30
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Teeth Extraction SIS (0

SASKATCHEWAN
M t ° I CRANEX D
a erla e Missing Tooth » Caries (Inema %
. . 'c o D 1isn(l/née~m]fll 1 No Caries (ong e ago)- R Diy
* Dental Panoramic x-ray images L. T S S
* Too noisy, has shadows, and interpretation is more & | d
sophisticated in comparison with Bitewing or ,adfq :
. . . A :
Periapical images ~Vevou
. . . . / M -, s gl
* Covers whole mouth with relatively low radiation Caries (Pulpitis)
. . Caries (Pulpitis/ Total Collapse
*Low cost, widely used, reveals dental caries and R EHPREVE / ]
jaw-bone fractions o e No Garics, Restoration + Root
T)")Ath ° Cdl’le.b (I/ntemal It’s a shadow Caries (Intemal Canal (appears
- Dentine/ Distal Dentine/ Distal) brighter)
Problem Description

* Panoramic Images are used for various tasks; dental caries classification, lesion detection, human identification, etc.
* In this research, we focus on tooth decay detection. It means to find teeth which appeared to have dark spots on them.

* Dentist/radiologist must investigate many x-ray images everyday, hence the chance of wrong detection (false positive
mainly) increases throughout the day. Also, this process causes eyestrain for them.

* True detection of caries in Panoramic images is challenging. Even radiologists working for years can not detect tooth
decay from image shadows through all the samples.

* Tooth extraction/segmentation isan important part required by most of the applications, such as dental caries detection.
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Pre-

Diagram of the Process processing

Genetic Algorithm

* Preprocessing: Contrast Limited Adaptive Histogram Equalization
Pop.

(CLAHE)/ Sauvola Binarization/ Blurring Filters generation v
* ROI Extraction: Edge Filters/ Checkpoint detection Final Best - Seplaar\gvtion Line
» Jaw Separation: CLAHE + Sauvola/ Starting point + Snake through Pop- B Drawing

the gap Selection
* Tooth Isolation: Vertical Intensity Projection/ Genetic Alg./ Line

Removal Initial Line Final Line Tooth

Removal Removal Extraction

Detailed Diagram and Algorithms

+

Fitting Generated Lines to Gaps

~

Tooth

: T\
Separation

Mandibular Separation

 Contrast-limited

Separation « Multiple vertical

o Vertical-edge filter Adaptive integral irtensity
’ giall;::rlaal]ﬁltevs h'smg.ram . . projections e Line removal by
equalization * Middle-points « Genetic distance to each

other
* Line removal by
intensity ranking

* Sauvola Binarizaon
method

¢ Snake method

 Sauvola
Binarization

algorithm

Tooth-Gap

Preprocessing Preprocessing

Line Removal based on Two Different Filter

S .-'\‘

Detection

Image with CLAHE

Binary Image: Sauvola
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Results

* Enhancements made on cost function and line removal method to improve the accuracy of mandible tooth extraction

* This study is the first to implement tooth extraction on Panoramic images and report the results. Panoramic images lack
explicit boundaries between segments, include unwanted parts, have shadows; but the acquired accuracy is in the line of
previous works carried out on easier image types.

*The overallaccuracy is 77.56%; 81.44% for maxillary and 73.67% for mandibularteeth

Comparison between proposed method and other teeth extraction research works

Image type Algorithm Correct Upper Correct Lower
Abdel-Mottaleb et al.[1] Bitewing Integral Intensity Method 169/195 - 85% 149/181 - 81%
Olberg and Goodwin [2] Bitewing Path-based Method 300/336 - 89.3% 270/306 - 88.2%
Nomir et al.[3] Bitewing Integral Intensity Method 329/391 - 84% 293/361 - 81%
Al-Sherif [4] Bitewing Energy-based Method 1604/1833 - 87.5% | 1422/1692 - 84%
Ehsani Rad et al.[5] Periapical Integral Intensity Method Overall: 90.83%
Proposed Study Panoramic Genetic-based Method 474/582 - 81.44% 428/581 - 73.67%

[1] M. Abdel-Mottaleb, O. Nomir, D. E. Nassar, G. Fahmy, and H. H. Ammar, “Challenges of developing an automated dental identification system,” in 2003 46th Midwest Symposium on Circuits and Systems,
vol. 1. IEEE, 2003, pp. 411-414.

[2]].-V. @lberg and M. Goodwin, “Automated dental identification with lowest cost path-based teeth and jaw separation,” Scandinavian Journal of Forensic Science, vol. 22, no. 2, pp. 44-56, 2016.

[3]10. Nomirand M. Abdel-Mottaleb, “A system for human identification from X-ray dentalradiographs,” Pattern Recognition, vol. 38, no. 8, pp. 1295-1305, 2005.

[4] N. Al-Sherif, G. Guo, and H. H. Ammar, “A new approach to teeth segmentation,” Proceedings- 2012 |EEE International Symposium on Multimedia, ISM 2012, no. 09, pp. 145 148, 2012.

[5] A. E. Rad, M. S. M. Rahim, H. Kolivand, and A. Norouzi, “Automatic computer-aided caries detection from dental x-ray images using intelligent level set,” Multimedia Tools and Applications, vol. 77, no. 21,
pp.28 843-28862,2018.

Related paper:
A. Haghanifar, M. M. Majdabadi and S. -B. Ko, “Automated Teeth Extraction from Dental Panoramic X-Ray Images using Genetic Algorithm,” IEEE

International Symposium on Circuits and Systems, Sevilla, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180937.
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Deep Learning for Teeth Segmentation SASRATCHEIWAN

Deep Learning for Segmentation

* To segment each tooth completely; finding the roots’ boundary

* Mask R-CNN to obtain state-of-the-art results on Panoramic images [6]. Tooth-structure segmentation is
well performed on Bitewing images using deep CNN [7].

* Annotation needed for train/validation/test; separating each tooth in each image

Instance
Original Groundtruth Segmentation segmentation

ResNet-101 FPN Rol align e

A= =7 1 IDD* T e
ﬁ e O |
Architecture for teeth segmentation [1] Sample result obtained by Mask R-CNN [1] Patal Rt

segmentation in Bitewing
images [6]

[6] G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep Instance Segmentation of Teeth in Panoramic X-Ray Images,” in Proceedings - 31st Conference on Graphics,
Patternsand Images, SIBGRAPI 2018, 2019, pp. 400-407.

[7]1 0. Ronneberger, P. Fischer, and T. Brox, “Dental X-ray Image segmentation usinga U-shaped Deep convolutional network,” pp. 1-13, 2015. 101



Deep Learning for Dental Caries Classification e s

Deep Learning for Automating X-ray Image Analysis

* CNNs are used for different x-ray image tasks: landmark detection in Cephalometricimages [8], finding lesions [9]
and osteoporosis [10] in Panoramic images, tooth classificationin CBCT images [11], diagnosing periodontally
compromised teeth in Periapicalimages [12]

* Few works have been conducted on Panoramicimages for classifying tooth decays; such as [13]

’5 0 l'lnmCNmeexh coordinate
,1. P
b3y3) -
a oy R+
S|
et

Training images &
landmark coordinates

iy o e , Dental caries detection using separated image
Lo . it of single tooth [8
Landmark detection in Cephalometric Tooth classification in CBCT & [8]

images [3] images [6]

[8] H. Lee, M. Park, and J. Kim, “Cephalometric landmark detection in dental x-ray images using convolutional neural networks,” Med. Imaging 2017 Comput. Diagnosis, vol. 10134, p. 101341W,
2017.

[9]R. G. Birdal, E. Gumus, A. Sertbas, and I. S. Birdal, “Automated lesion detection in panoramicdental radiographs,” OralRadiol.,vol.32,n0.2, pp.111-118, 2016.

[10]J.S. Lee, S. Adhikari, L. Liu, H. G. Jeong, H. Kim, and S. J. Yoon, “Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis
system: A preliminary study,” Dentomaxillofacial Radiol., vol. 48, no.1,2019.

[11]Y. Mikiet al., “Classification of teeth in cone-beam CT using deep convolutional neural network,” Comput. Biol. Med., vol. 80, no. September2016, pp. 24-29, 2017.

[12]J. H. Lee, D. H. Kim, S. N. Jeong, and S. H. Choi, “Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm,” J. Dent., vol.
77,n0.2, pp.106-111,2018.

[13] R. Ben Ali, R. Ejbali, and M. Zaied, “Detection and Classification of Dental Caries in X-ray Images Using Deep Neural Networks,” ICSEA 2016 Elev. Int. Conf. Softw. Eng. Adv., no. c, pp. 223-227,
2016. 102



Deep Learning for Dental Caries Classification: PaXNet SASRATOREWAN

Material

* High-resolution Panoramic x-ray images collected from two main sources: UESB dataset [14] and from a local dentistry clinic in
Iran.

» UESB dataset has teeth mask annotations along with it. For our dataset, we used previously proposed genetic-based teeth
extraction algorithm to isolate teeth in each image.

* Labels are provided by a radiologist. Caries are classified into two categories: mild and severe. Each tooth gets a label, and
segmentation masks are not available yet, due to its time-consumption and limited availability of radiologist/dentist.

Proposed Model

« This research is the first one to perform dental caries detection 1P _
on Panoramic x-rays. All previous studies have used less | ”
challenging x-ray types, like Bitewing or Periapical.

* Capsule network-based architecture is used for the first time :
for dental caries diagnosis. o

First
i Capsule layer

Second
Capsule layer

CheXNet

Dynamic Routing

* Feature extraction module is constructed by a voting system : | E Decoder
between different architectures. CheXNet [15] is applied for ‘ Feature Extraction | Capsule Network iImage Reconstruction "8
the first time in dental disease detection tasks based on x-rays. Architecture of PaXNet

[14] G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in x-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, vol. 107,
pp.15-31,2018.

[15] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,”
arXiv preprint arxXiv:1711.05225, 2017.
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Results

* Gradient-weighted Class Activation Mapping (Grad-CAM) is
used to highlight extracted features of each extractor models.
* Re-sampling technique is used to deal with class imbalance
* PaXNet model illustrated robustness activation map generation
when applying linear transformation to any input image ..-......-

* PaXNet model achieved an accuracy of 86.04% in a test-set of
368 teeth. Recall scores for classification of mild and severe
caries were 69.44% and 90.52%, respectively.
Pred=0.7048 Label=1

.

Before CapsNet Original image

..

Convolutional o) )
network inepection Lighten Darken

Sample Result Demonstration of the robustness of the system

Zoom out Zoom in

(b)
l” 2
ﬂﬂl.l

HINn
>

AutoEncoder CheXnet

A. Haghanifar, M. M. Majdabadi, S. Haghnifar, Y. Choi and S. B. Ko, “PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and

capsule classifier,” Springer Multimedia and Applications, Vol. 82, Iss. 18, pp. 27659-27679
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COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning TR O

Material & Preprocessing

* Frontal chest x-ray radiographs (CXRs) with PA or AP
projections

* Collected from 10 different publicly available sources

* One of the largest collections of CXRs from patients with
COVID-19: https://qithub.com/armiro/COVID-CXNet

Randomly selected images from different sources

* Including 1326 images, as of May 2021. Images have different
sizes and are in different formats. vo

o
73
23

* Normal/non-COVID pneumonia images are collected from
different sources; mainly NIH CXR-14 dataset [1]. 5,000
normal and 4,600 non-COVID pneumonia x-rays are used.

» Different histogram equalization (HE) preprocessing methods o

are used: HE, AHE, CLAHE, BEASF el 5 .

COVIDGR mm Other

* BEASF algorithm [2] is implemented in python for first time:
https://github.com/armiro/COVID-CXNet/blob/master/BEASF. py Dataset distribution

[1] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospitalscale chest x-ray database and benchmarks on weakly-supervised classification and localization of common
thoraxdiseases,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2097-2106.

[2] E. F. Arriaga-Garcia, R. E. Sanchez-Yanez, and M. Garcia-Hernandez, “Image enhancement using bi-histogram equalization with adaptive sigmoid functions,” in 2014 Intemational Conference on
Electronics, Communications and Computers (CONIELECOMP). IEEE, 2014, pp. 28—34.
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COVID-CXNet: COVID-19 Diagnosis in CXRs using Deep Learning TR O

Problem Description

* The standard diagnosis method for detection of COVID-19 is by reverse transcription polymerase chain
reaction (rRT-PCR). PCR testing has certain drawbacks; it needs special test-kits, and the results are
generally available within hours to days.

* Hopefully, the disease could be assessed by detecting clinical features as well as imaging features of
pneumonia [3].

* Since radiologists are visiting many patients every day and detection takes significant time, detection
error rate may increase, ending up having false negatives which costs a lot to the patient and the
medical staff.

* In this research study, we investigate the possibility of using deep learning-based automaticimage
classification system to detect COVID-19 pneumonia in CXRs.

* Although CT scans have proven to be more efficient revealing detailed features of the chest, there are
less widely available and affordable than CXRs. Besides, patient's clinical situations often does not
allow a CT scan.

[3]Y. H. Jinetal., “A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version)," Military Medical Research, vol. 7, no. 1,
p.4,2020.
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Developed Method

* A U-Net based semantic segmentation module to extract
lung from the body and background

* Trained on two datasets of manually segmented lung masks
[4][5]

* Transfer learning from CheXNet [6], beingtrained on a la
dataset of frontal CXRs to classify different lung diseases

* DenseNet-121 as the backbone

N,

DenseNet-121

Backbone

P —
’ ~
S mee e ————————

DenseNet-121

mQ doiqg

Backbone

r .
o o
7 ; b COVID-CXNet model architecture based on the DenseNet-121 feature extractor as the

The segmentation approach based on the U-Net backbone

[4]S. Stirenko, Y. Kochura, O. Alienin, O. Rokowyi, Y. Gordienko, P. Gang, and W. Zeng, “Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation,” in 2018 IEEE 38th
International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2018, pp.422—428.

[5] S. Candemir, S. Jaeger, K. Palaniappan, J. P. Musco, R. K. Singh, Z Xue, A. Karargyris, S. Antani, G. Thoma, and C. J. McDonald, “Lung segmentation in chest radiographs using anatomical atlases
with nonrigid registration,” IEEE Transactions on Medical Imaging, vol. 33, no. 2, pp. 577-590, 2013.

[6] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning,”
arXiv preprint arXiv:1711.05225, 2017. 107
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Results
* Grad-CAM to visualize model output results, and to prevent “right decision with

wrong reason” phenomenon commonly encountered when datasets are small Final confusion matrix Of(i)o‘g‘)t'imet

H . . redaicte

* Lung segmentation to enhance model accuracy and robustness to recurring text/signs | COVID-CXNet o ——ap T cp
* Label smoothing to add uncertainty to the labelling sy [ et
* A hierarchicalapproachto improve scores in discrimination between normal and cP 3 11 [ 130

non-COVID pneumonia classes

pred=0.6134 pred label= Normal

pred=0.9785 pred_label= CAP label=CAP
- - -

pred=0.8582 pred_label= CAP pred=0.6096 pred label= CP label=CAP

COVID-CXNet multiclass classification visualization results

A. Haghanifar, M. M. Majdabadi, Y. Choi, S. Deivalakshmi, and S. B. Ko, “Covid-CXNet: Detecting covid-19 in frontal chest x-ray images using deep
learning,” Springer Multimedia Tools and Applications, 81, 30615-30645 (2022). 108
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Enhancements on Model Architecture (ongoing)

e Since COVID-CXNetis a modification of CheXNet as the main
model, there is room for increasing performance scores by
benefiting from different methods as the classifier block instead of
simple dense layers

e Capsule Network is a good option, which has previously
demonstrated to be helpful in PaXNet project.

* Attention Modules are relatively new in this field. While channel
attention modules are more popularin this area, there are
convolutional attention modules as well. Convolutional Block
Attention Module (CBAM)[7] is used for both channel and spatial
attentiondimensionsand is general so that could be added to any
CNN architecture. A huge motivation interms of adding attention
to the network is [8] where the authors have proved that using
their developed uncertainty attention block, pneumonia
classificationin chest x-rays improved roughly 9%

[7]1S. Woo, J. Park, J Lee, and I. Kweon, “Cbam: convolutional block attention module,” Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3—19.
[8] C. Wang, F.Su, T. Lee, Y. Tsai, andJ. Chiang, “CUAB: Convolutional Uncertainty Attention Block Enhanced the Chest X-ray Image Analysis,” arXiv preprint arXiv:2105.01840, 2021.
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HackTech-Covid Innovation Solution W s oA

UV-SAFE: Advancing Market Product Disinfection with Automated UV-Technology
Device

* An automated device for viruses and bacterial disinfection for use in market

products published in proceedings of ETCM 2023, IEEE. Mechanical Parts
* Results of an experimental study, conducted with regular and irregular objects. 2 | isitecion Chamber
* Thelightincidencein the object was validated by experimental tests. :

 The disinfection process takes 10 seconds per product, achieving a log-
reduction dose.
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Academic Article Information Extraction UNIVERSITY OF

SASKATCHEWAN

Document Structure Extraction

* Automatically identifying and extracting areas of interest in academic works can help with
further information extraction and analysis

» Datasets exist for training models on this task, but they often only annotate a handful of objects

* We create an expanding and open-source Densely Annotated Dataset (DAD) for academic article
semantic segmentation

* Dataset publicly available on GitHub
* https://github.com/LivingSkyTechnologies/Dense_Article Dataset_ DAD
* Presented dataset in 2020 Workshop on Scientific Document Analysis

L. Markewich, Y. Xing, H. Zhang, Z. Jiang, N. Lambert-Shirzad, R. Lee, Z. Li and S. Ko,
“Document Structure Extraction: An Exploratory Study,” 2020 Fourth International
Workshop on Scientific Document Analysis (SCIDOCA2020), Nov. 2020.

o
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Document Structure Extraction
* DAD contains annotations for 42 document objects across 450 academic journals

e Other popular datasets like PubLayNet and DocBank contain annotations for 5 and 11 document
objects respectively

Front Matters Body Matters Back Matters Journal #Articles
Class Pages Instances Class Pages Instances Class Pages [Instances Ampersand 50
abstract 455 466 abbreviation 49 49 acknowledgment ol 63 International Journal of Engineering Science 26
affiliation 477 449  caption 2754 4378  additional file 24 24 Results in Engineering 24
article history 382 385 citation 3742 37114  appendice 174 224 Language Testing in Asia 50
author name 449 449  code 49 49  author bio 115 147 Research in Engineering Design 34
contact info 537 539  core text 5000 13517  author contribution 121 126 Protection and Control of Modern Power Systems 16
copyright 480 639 figure 1940 2851  availability of data 138 138 Sage Open 50
date 446 473 index T04 3209  conflict int 279 282 Ad in Mechanical Enei . 50
doi 448 473 list 555 812  conset of publication 3 3 vances m Vechanical Ligneerng
funding info 291 366 math formula 832 8634 corresponding author 38 39 Asia & the Pacific Policy Studies 26
highlights 31 31 nomenclature 18 18 editor 80 80 Brain and Behaviour 24
journal 442 677 section heading 2719 4342  ethics 7 7 Advanced Science 50
keywords 434 435 subheading 2367 4212  note 354 1451 Transactions on Computers 26
math subject class 3 3 table 1109 1459  publisher note 56 56 Transactions on Mobile Computing 18
publisher 439 442 reference 968 1451 Transactions on Affective Computing 6
title 450 450 URLs to supplementary 132 150 Total 450

Summary of annotated objects Summary of sourced academic articles

o
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Doc u m e nt St ru Ct u re E Xt ra Cti O n Gated-SCNN FastFCN PAD DeepLabV3+ PSP-UNet

Pixel Pixel mloU Pixel mloU Pixel mloU

Py W d I I f t H f t H t t H Class Acc. mIOU Ace. Acc. Acc.
€ aevelo p d New I0SS Ttunction 1or semantic s eg mentatio n, abstract 98.04% 71.02% 99.49% 94.39%  99.43%  96.22%  92.41% 86.93%
t t . t h b d . b f . f d author name 098.43%  39.49% 99.93% 71.74% 99.66% 84.47% 95.08% 73.79%
background 83.91% 81.75%  94.68%  92.96%  97.48%  96.01%  94.97%  93.45%
eX ra C I n g e O u n I n g Oxes ro m l n e re n Ce caption 91.789’2 34.389’2 99.01?2 72.8872 96.84‘%(: 89.929’: 97.4372 82.6972
M M M M M contact info 08.28% 39.88% 99.94% 55.74% 92.63% 65.39% 94.47% 41.78%
segmentations and calculating the generalized intersection- opyright | OTOIG  BSA%  90ATX T0SI%  9829%  SO70% 8% THATR
. core text 78.78%  T1.33% 94.50% 92.74% 96.44% 94.26% 93.69%  92.13%
Ove r_ u n I O n (g I O U ) I OS S doi 98.38%  30.T1% 98.82% 47.08%  100.00% 84.79% 99.96% 56.58%
figure 84.47% 76.00% 97.34% 94.46% 98.60% 95.34% 97.69% 94.31%
funding info 70.31%: 16.18?2 85.7197: 47.89972 70.869’2 53.119’2 74.60‘72 47.34972
° Ad d .t . I I d I t . ht. I I t . th t keywords 96.24? 33.03;& 99.80? 66.40? 96.22? 78.93? 92.79? 47.68?
list 43.70 27.02 95.57 73.90 72.14 59.19 T7.94 59.79
I I 0 n a y’ We eve o p a Cu S 0 m Welg I ng Ca Cu a I O n a math formula 76.349’: 21.88‘7: 97‘6197: 5().05‘,’7: 81.899’: 53.449’2 9()‘71‘?: 3937'?:
H H H H note 98.55% 32.28% 99.88% 80.00% 73.92% 64.45% T4.61% 59.15%
calculates class weights on every training batch, heavily obisher  10000% 50 10000% 009 a0  ssowk  6303%  060%
. . reference 87.69% 78.20% 97.65% 93.69% 93.97% 90.47% 95.06% 93.23%
wei g ht| ng C I asses t h at are sma I |/ra re |y a p pea r section heading ~ 93.20%  31.35%  99.66%  57.27%  96.93%  79.25%  97.73%  58.95%
table B8.79% 69.78% 97.91% 91.56% 96.64% 93.36% 97.76%  90.78%
title 99.867: 54.62'.’-7; 99.25?: 82.14% 98.1 19'2 QD.SD“/’; 93.27% 86.54'7:
. . . appendice® 35.04%  38.28% 96.43% 82.10% 46.34% 44.88% 33.69% 30.42%
[ ] 0 author bio* 99.75% 61.67% 99.93% 94.67% 99.50% 95.42% 98.38% 95.14%
O u r m et h Od S res u It I n a + 1 * 9 9 A) F 1 I m p rove m e nt Wlt h editor*® 100.00% 10.159’2 100.00‘?(; 33.3172 100.00?0/6 57.5792 100.00‘;6 1937?’:
Average 87.24% 44.35% 97.85% 71.90% 90.87% 78.08% 90.18% 65.73%
Dee p La bV3 + on DAD F1 876% 05.46% 96.26% 93.60%
. N .
* DeeplabV3+ trained on DAD can be used for bootstrapped Benchmark results on DAD w/ glOU loss + loss weights
d nnotatlon, ShOWS d 38% m provement In annotation Speed
PubLayNet
. . . Gated-SCNN FastFCN DeepLabV3+ PSP-UNet
e Published in Sprlnger IJDAR (2022) Class i‘::l mIOU i’:fl mIOU i‘::‘ mIOU i‘;‘fl mIOU
. e . . - . . background  66.74% 64.64% O1.76% 890.62%  96.30%  95.44% 97.32%  96.04%
Logan Markewich, Hao Zhang, Yubin Xing, Navid Lambert-Shirzad, Zhexin Jiang, Roy Ka-Wei Lee, Zhi fgare 67_792 50.00% 98 84% 3&5435 9917%  99.95% 93_34;; 93.80%
Li, and Seok-Bum Ko. Segmentation for document layout analysis: not dead yet. International list 48.84% 33.17% 94.87% T7.25%  96.85%  82.99% 94.78%  86.51%
: " table 95.45% 64.31% 99.34% 90.38%  99.38%  94.60% 98.90%  96.06%
Journal on Document Analysis and Recognition (IJDAR), Jan 2022 text 7137% 66.50% 93.58% 88.90% 95.88% 94.34% 97.28%  95.51%
title 65.25% 31.91% 98.53% 50.69% 99.01%  73.33% 99.05%  72.32%
Average 69.24% 54.72% 96.15% 80.90% 97.76% 88.83% 97.61% 90.04%
F1 73.08% 94.26% 97.11% 97.66%

Benchmark results on PubLayNet w/ glOU loss + loss weights

®
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Document Content Analysis

* Content analysis includes many subtasks
* Sentiment Analysis

Named Entity Recognition

Topic Extraction

Keyword Extraction

Relation Extraction (RE)

* RE focuses on classifying relations between important nouns (named entities)

—— Date of Deoth T
e —

John Doe, who has worked as an MP in the Candaian Parliment since 2008, was found dead in his appartment on April 4, 2011

Pairgon l.':r;'mn-rnl g

il

An example of relation extraction. Three entities are classified with specific relations.

®
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Document Content Analysis

e Datasets exist for relation extraction, but contain limited categories for entities and relations

- Entity Types H Relation Types

CoNLLO4 [74] 4 5
Re-TACRED [79] 17 40
DocRED [95] 6 96

* Models trained on these datasets will miss contextual information from the input
REBEL

Tesla has stopped building forward-facing radar sensors into its Model 3 sedans and Model Y SUVs in North (Autopilot, developer, Tesla)
America, after CEO Elon Musk publicly expressed a desire to rely on cameras to power the company’s
advanced driver assistance system, Autopilot. Tesla has been developing the vision-based version of Autopilot
during the limited beta test of its “Full Self-Driving” software. But it’s not completely done making sure
Autopilot works without the radar sensors, though, as it is limiting or disabling some features on these (Model 3, manufacturer, Tesla)
vehicles for an indefinite amount of time. Autosteer — the Autopilot feature that can keep a Tesla centered in
a lane, even around curves — will only be usable at 75 miles per hour and below. Tesla is also only making it
available at an (unspecified) longer minimum following distance to any cars in front.

(Tesla, founded by, Elon Musk)

A state-of-the-art (SOTA) model only extracts background information.
No information about the actual content is identified.

(Elon Musk, employer, Tesla)

(Autosteer, developer, Tesla)

®
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Academic Article Information Extraction

UNIVERSITY OF
SASKATCHEWAN

Document Content Analysis

* We create a new Descriptive
Relation Dataset (DReD) for
describing relations between general
noun-phrases

» 3,283 annotated paragraphs, 14,126
sentences

* Models trained on DReD can
describe rich and contextual
relations missed by current
approaches

* Work is current in review with IEEE
Transactions on Artificial Intelligence

MIt JCS 5 vvinosiyrechnoiosies

Tesla has stopped building forward-facing radar sensors into its Model 3 sedans and Model Y SUVs in North
America, after CEO Elon Musk publicly expressed a desire to rely on cameras to power the company’s
advanced driver assistance system, Autopilot. Tesla has been developing the vision-based version of Autopilot
during the limited beta test of its “Full Self-Driving™ software. But it’s not completely done making sure
Autopilot works without the radar sensors, though, as it is limiting or disabling some features on these
vehicles for an indefinite amount of time. Autosteer — the Autopilot feature that can keep a Tesla centered in
a lane, even around curves — will only be usable at 75 miles per hour and below. Tesla is also only making it
available at an (unspecified) longer minimum following distance to any cars in front.

REBEL

TSpren

{Autopilot, developer, Tesla)

(Model 3, manufacturer, Tesla)

Autopilot, which keeps a Tesla
centered in a lane, is limited by
Tesla's vision technology.

Tesla Model 2 has stopped
building forward-facing radar
Sensors.

Tesla stopped building forward-
facing radar sensors.

Cameras are now standard on the
Tesla Model 3 sedan.

(Tesla, founded by, Elon Musk)

Tesla has stopped building
forward-facing radar sensors after
CEO Elon Musk expressed a
desire to rely on cameras.

Tesla sedans now have cameras
instead of radar sensors.

Tesla sedans no longer have
forward-facing radar sensors.

(Elon Musk, emplover, Tesla)

Elon Musk is CEO of Tesla.

( Autosteer, developer, Tesla)

Autosteer is a feature of Tesla that
keeps it centered in a lane.

SOTA model results

Same relations
described by a model
trained on DReD

Relations found
between general
noun-phrases
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SASKATCHEWAN

Document Content Analysis (Future)

* On-going projects for document content analysis
continue

* Named entity recognition for scientific
documents

* New metrics for text summarization models

* End-to-end argument mining and quality analysis
* Topic extraction

* The goal is to combine all extracted facts from
the content into a knowledge base

M ' tac s 5@“ Living Sky Technologies

Named

.. Relations
Entities

Summaries

Knowledge
Base
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UNIVERSITY OF

Academic Article Information Extraction SASKATCHEWAN

Named-Entity Recognition

* Named-Entity Recognition over scientific texts is
vital for extracting and understanding
information.

* We introduce Sci-BERT*, an enhanced model to
analyze scientific texts from the fields of
Artificial Intelligence, Biomedical Engineering,
and Natural Language Processing, by performing
Named-Entity Recognition over them.

 Our solution utilizes a pre-trained scientific
BERT-based language model connected to a
bidirectional LSTM network.

®
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Named-Entity Recognition

* Sci-BERT* is capable of improving pattern recognition for scientific entity types with high
accuracy.

* It was evaluated across three different datasets (SciERC, TDMSci, and NCBI-disease),
emphasizing its ability to learn from and work with scientific articles' semantics and syntax.

TABLE I: Repeated holdout method results of our study and previous studies results

BIO™ 10°°
Referesice Dataset Entities Fl F1* F1 F1*
Study )
SpERT [15] s ’ 5 g 70.33
Sci-BERT" Salie g 88.71 + 047  71.11 % 1.01 90.17 + 034 7320 = 1.06
Flair-TDM [3] .. 76.47 - - -
Sci-BERT" TDMSci 3 9249 + 026 7091 + 1.11 9333+ 026 76.17 + 0.88
KeBioLM [16] . 89.10 -
BLURB [44]  NCBl-disease 1 . 88.10 ' <
Sci-BERT* 98.16 + 0.12  89.59 + 0.56 98.18 + 0.18 9137 + 0.85

As stated this metric does not include No-Entities values into its calculation.
* Metrics values resulted from the outputs provided according to BIO encoding method.
*E% . . - -
Metrics values resulted from the outputs provided according to 10 encoding method.

®
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UNIVERSITY OF

Named-Entity Recognition

SASKATCHEWAN

* Another advantage is seen while comparing the performance of our system between BIO and

IO encoding methods. Our model could be used with either of these two encoding types,
obtaining similar results (CM Example figures with the TDMSci Dataset).
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Named-Entity Recognition

* An implemented t-DSNE method shows the improvement obtained in classification while
comparing the pure SciBERT model against our proposed solution, SciBERTN.
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Named-Entity Recognition

* |t is important to emphasize that our model, SCiBERTN, refrains from fine-tuning the SciBERT
layers and exclusively focuses on fine-tuning the LSTM layer. Consequently, our approach
centers around creating a new foundational model with comparable attributes while achieving
superior performance compared to a fine-tuned SciBERT model.

SciBERT SciBERTN

Repeated Holdout  Cross-Validation  Repeated Holdout  Cross-Validation
Encoding®* Datasets F1 F1* F1 F1* F1 F1* K1 F1*

SciERC*** 89.07 73.25 96.71 93.18 89.18 72.12 96.39 91.17
TDMSci*#* 92.69 72.50 98.78 94.94 92.75 72.02 97.93 91.70

BIO NCBI-Disease 97.78 8800 9897 9468 9828 9015 9919 9566
SciEnt 9286 6929 9758 8746 9320 6950 9828  89.66

SciERC 9755 9389 9682 9206 9051 7426 9660 9114

! TDMSci 9338 7676 9816 9313 9359 7705 9885  95.68
NCBI-Disease 98.17 9139 9940 97.12 9836 9222 9931 9674

SciEnt 9771 9220 9737 9014 9850 9444 9709  88.83

®

Refer to Sect. 1V-C2.

B1O and 10 encoding methods metrics values.

This models showed overfitting in their Repeated Holdout training evaluation method in both F1 metrics for SciBERT.
Note. Colored fields are used to show comparison metrics among models, and underlined values indicate the best score
among these fields.
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