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Robots are working in a complex environment?

Robots are replacing human labor
Various decision makings required for tasks in a complex
environment

Sensing, actuation, sorting, navigation, handling




Complex adaptive system approach for complex

changing environments

A complex adaptive system is a system that is complex in that it is a dynamic

network of interactions, but the behavior of the ensemble may not be predictable

according to the behavior of the components.
It is a "complex macroscopic collection” of relatively "similar and partially connected
micro-structures"” formed in order to adapt to the changing environment and increase

their survivability as a macro-structure. 24l

Popular approaches : replicator dynamics (mathematical models for individual or

groups to make decisions.).l2

Our approaches : Hierarchical Reinforcement Learning
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What’s required for a complex adaptive system

 Ability to deal with complex event horizon tasks

 Ablility to deal with conflicting goals

* Ability to train itself in unsupervised manner

* Ability to incorporate transfer learning

- Ability for adaptive evolution for further complex

environments
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What Is Reinforcement Learning?
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Agent. An entity that takes actions (an
algorithm). For example, A Mobile Robot /
Drone.

Action (a): Decisions taken by the agent in
the environment.

Farm Environment.

- State (S): observations from the
environment.

 Reward: An immediate response from
the environment to an agent's behaviors.

« Policy: Policy is a function=> maps states
and actions, denoted by , (S) = a.
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Bellman Equation

Expresses the value of a decision dilemma for a given state
In terms of rewards obtained from the action and value of
state resulting from that action taken.

Vz(s) = R(S,a) + vV (S")

Computationally Bellman’s optimality principle is very
expensive to choose the most effective strategy.

« Complex environment -> environmental model Is
unknow
» Model Free Algorithm = good for complex environment



V and Q values of Reinforcement Learning

State Value Function or Value Function
(V): Measuring Value of state as Reward.

{s1,a1,r1,s2)
(s2,02,r2,53)

Sl V(9 = EIRIS, = S] = E[Xy'rIS = S|

Q-Value or Action-Value (Q): Measuring
Value of both state and action as reward.

Q.(S,a) = E[R|S,a, ] = E[Xy'rt|S, a, r]




Brief time of Reinforcement Learning

‘ >>ﬂ> 2017 >

PPO Other variants

DT ) T

DQON and AlphaGo

1.) Q-learning
2.) SARSA

1992 — MAXQ- Tom Mitchell

1997 — Options — Sutton et all
2003 — HMDPS Bertsekas et all.
2005 — HAM — Barto et all.

2010 — Feudal RL-Dayan et all.
2016 — Option Critic — Bacon et all.

Framework for RL. was proposed by
Richard Sutton and Andrew Barto.

1.) The first ideas of RL, field of operant
conditioning-B.F. Skinner.
2.) Bellman Equation for DP




Hierarchical Reinforcement Learning (HRL)

» Basic RL algorithm’s unable to scale for high dimensions.
 The state and action abstractions are discovered to help an RL algorithm to scale.

» For example, instructions like “Command a Mobile Robot to move from a target to
Destination” With the use of this abstraction, a real-time agent can create a strategy for

breaking down a larger task into smaller, manageable pieces.

- The Hierarchical RL idea is that an agent can have abstract actions as part of Its state

space that aids in faster planning.




Proposed Structure of HRL

Manager
[DDPG/PPOV..]

Worker-2 Worker-3 Workert-4

Worker-1
[PPO/DDPG/..]

[PPO/DDPG/. ] [PPO/DDPG/. ] [PPO/DDPG/..]




Deep Deterministic Policy Gradient (DDPG)

Deterministic Deep Q-
PG Network

« The DQN works for discrete state space, whereas the DDPG extended for
continuous state spaces .

* It has soft update the actor-critic networks In a way that they update the
network parameters in a small time steps.
- DPG

« DPG models the policy as a deterministic decision as a = m(S).

 Since the probability distribution is stochastic in nature, we can think this
deterministic policy as a special case of the stochastic approach.



Proximal Policy Optimization (PPO)-On-policy

» For stable training, it avoids parameter updates that drastically change the policy in one

step.

- By imposing a KL divergence constraint on the amount of the policy updates at each

Iteration, training stability improved a lot.
 Schulman et al., implemented using a clipped surrogate objective function.

o [CHP(9) = E[min(r(@)Agold(s, a),clip(y(8),1—¢&,1+ €)Agoia(s a)|

» 0 = policy parameter, E = Denotes the empirical expectation over time steps, Probability Ratio, r = (P(6,,)/P(6,4)), A = estimated

advantage value at the time t, € = hyper parameter usually 0.1 or 0.2



Learning Steps of PPO vs DDPG

© PPO
4 O DDPG

earning step of PPO

Loss Learning step of DDPG

minimum
I.earning Parameter
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Hierarchical RL

» HRL algorithms have the potential to be useful in applications,
particularly those where tasks can be decomposed into a hierarchy
of subtasks (Complex Event Horizon Problems).

 Challenges of HRL

« Complexity: Needs to learn both high level and low-level policy.

« Difficulty in designing hierarchical structures manually
(states/rewards).

 Lack of generalization.



Transfer Learning

» Due to high complexity of state and action spaces—> learning sufficient
Interaction samples can be challenging.

» This might cause safety issues In industries where making the wrong
decision could have catastrophic conseguences, such as autonomous driving
and health informatics.

 Transfer learning in the context of RL aims to learn an optimal policy &* for
a complex environment M,, from a set of simple environment M..

» This approach is to learn a generalized policy from those simple
environments, which can be quickly adapted to target environments.
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HDDPG Algorithm

1. Randomly initialize critic and actor networks for training Goal and Obstacle preferred tasks.
2. Obtain the trained model for goal touch preferred task as worker_1.
3. Obtain the trained model for Obstacle avoidance preferred task worker_2

>

Obtain the trained model for Obstacle avoidance preferred task worker_n.

5. Randomly initialize critic and actor networks of Manager agent for managerial level tasks to deploy best worker action ‘a’ for the current state ‘s’ to
achieve maximum reward.

6. Initialize target network

7. Initialize replay buffer RB

8. for maximum Episode do:

Q. Initialize a random process N for action exploration.

10. Receive initial observation state s1.

11. for maximum step do

12, Retrieve action probability of manager from the manager policy
13. If in given action probability range:

14. Range 1: execute worker 1 action ‘al’

15. Range 2: execute worker 2 action ‘a2’

16. Range n: execute worker_n action ‘an’

17, Store reward rt and new state st+1 transitions in RB.
18. If the buffer is full, train the model

19. N transitions (si, ali, ri, si+1) are randomly sampled from RB.
20. Update all the networks and compute the loss function.
21. end

22. end



State-action value(Q-value) of the Manager

Therefore, the action of a manager will be dependent on that of each worker. That is,

alr = a €{aq a,,as,..a,},
Q.%.(s,a) =R(s,a) +Y - z P(s'|s,a) -argmax Q' (s',a")
Sl

where Q" is the action-value function of a manager, is the trained policy of the manager, and

aq,a,,as,..a, represent the action of each worker.



Total State Variables of the Environment (48)

ROBOTIC MANIPULATOE ARM 6 -DOF

GOAL TOUCH Agent State Vanables of the end-effector of Manipulator

1. Normalized >-joint position vectors (axis J—axis 6): 12 vaniables
2. Normalized Distance vectors from the end-effector to the goal: 1 vanable
3. Normalized Difference from the end-effector to the goal: 4 variables

OBSTACLE AVOIDANCE Agent State Variables of the Manipulator

1. Normalized Distance from each joint to the closest obstacle: 6 variables
2. Boolean variable indicating 1f obstacle 1s touched by the arm jomnts: 1

3. Boolean variable indicating if the closest nearby obstacle 1s touch by each joint: 6 variables
4. Normalized positions of obstacles: 9 variables



Total State Variables of the Environment (48)

MOBILE ROBOT

GOAL TOUCH Agent State Variables of Mobile Eobot

1. Boolean vanable for Goal touch or not: 1 variable
2. Normalized Distance vectors from the center of Mobile Robot to the goal: 1 vanable
3. Normalized Difference of robot and goal positions twice: 4 variables

OBSTACLE AVOIDANCE Agent State Variables of Mobile Robot

1. Normalized Distance from Mobile Robot to the closest nearby obstacle: 1 variable
2. Boolean vanable indicating 1f obstacle 1s touched by the Robot: 1 variable

3. Normalized Difference of robot and if the closest nearby obstacle 15 touched: 2 vaniables



Reward System Design
~

ROBOTIC MANIPULATOR ARM 6 -DOF REWARD

(Goal Touch Reward of Manipulator

Reward ARM GT = negative sum of distance between the end-effector and the goal
Reward ARM GT =Reward ARM GT + 1 (if the end-effector touches the goal)

Obstacle Avoidance Reward of Mampulator

Reward ARM OBST = positive sum of distances between each jomnt and the closest nearby obstacle
Reward ARM _OBST =Reward ARM _OBST — 1 (1f any joint touch the closest nearby obstacle)



Reward System Design

~ M

MOBILE ROBOT REWARD

Goal Touch Reward of Mobile Robot

Reward MR _GT = negative sum of distance between the robot and the goal positions
Reward MR GT =Reward MR GT + 1 (1f the mobile robot touches the goal position)

Obstacle Avoidance Reward of Mobile Fobot

Reward MR OBST = positrve sum of distances between robot and the closest obstacle
Reward MR_OBST = Reward MR_OBST — 1 (if a mobile robot touches the closest nearby obstacle)
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Environment - |
(Training Environment)

6-DOF Mamupulator

k> Mohjle Robot
D S

* Sensitive
equipped 6 DOF
robotic manipulator
+ mobile platform

» Manipulator

- Worker #1
 Goal touching
- Worker #2

« Collision
avoidance

« Mobile robot

- Worker #3
« Goal touching
- Worker #4

« Collision
avoidance



RESULTS

Total Average Rewards
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Harvesting Task Results
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Harvesting Task Results
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Important Observations

» Hierarchical structure allows for more flexible individual training of
each model, resulting in improved performance.

» The collaboration of two agents with distinct objectives to fulfill their
primary objective.

» The customizability option enables the replacement of the model with
the best performing model, resulting in significant time savings during
training.

» The hierarchical design's structure facilitates the addition of more
functionality by expanding the number of sub-worker models to meet
the required number of subtasks.



Conclusion

» A Hierarchical Reinforcement Learning (HRL) architecture is studied

as a comp
» The nove

ex adaptive system to take complex environment
HRL architecture using manager-worker is implemented

with the goal of expanding a reinforcement learning scheme towards
a generalized Al through flexibility and expandability.

» Manager-worker structure demonstrated the ability of potential
complex event horizon solver

» The proposed HDDPG and HPPO are compared with PPO and

DDPG al

gorithms for performance evaluation. The results show the

HDDPG demonstrated superior performance in reward gain, travel
distance, and execution time.
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