
Manufacturing: Optimal Integration of Engineering Endeavors 제조: 공학기술의 최적화를 위한 통합

Patrick Kwon (권영선)

Professor Michigan State University Department of Mechanical Engineering East Lansing

September 25, 2023

Historical Note in relation to MFG

Artisan

- Tools in Stone age
- Powder processing (Clay) (4000BC)
- Metals Casting, Forging & Heat Treating (2500BC-1850)
- The First Industrial Revolution (1760-1830)
 - John Wilkinson (1774) Machine tools
 - Thomas Newcomen & James Watt (1776) Steam Engine
 - Eli Whitney (1797) Interchangeable parts
 - Adam Smith (1776) "The Wealth of Nations" Free Enterprise
 - Henry Ford (1913) Assembly line
- The Second Industrial Revolution (1950-1970s)
 - Computers & Microchip CNC machine
- The Third Industrial or Information Revolution (1980s) Internet
- The Fourth Industrial Revolution? Additive Manufacturing (AM), Industry 4.0,
 - Can AM produce a part with the required tolerances and surface finish that a modern product demands?

Manufacturing

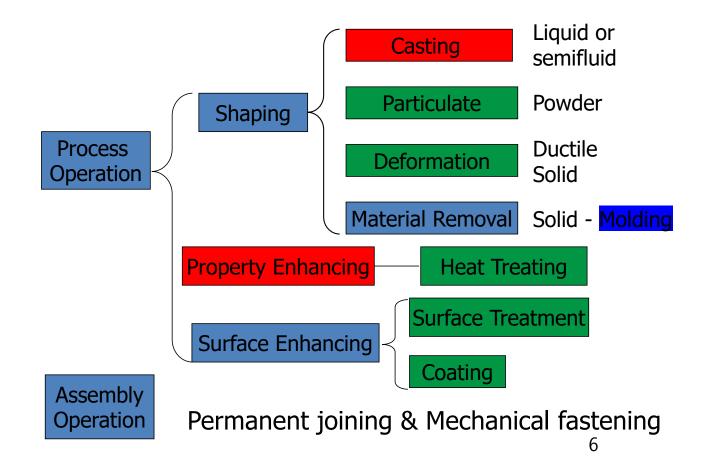
- Manufacturing is the creation or production of goods with the help of equipment, labor, machines, tools, and chemical or biological processing or formulation.
 - Materials
 - Quantity
 - Quality geometric attributes (precision & surface finish), ma terial specs
- Manufacturing Engineering efficient & effective manufacturing enterprise
- Materials Science background to deal with materials

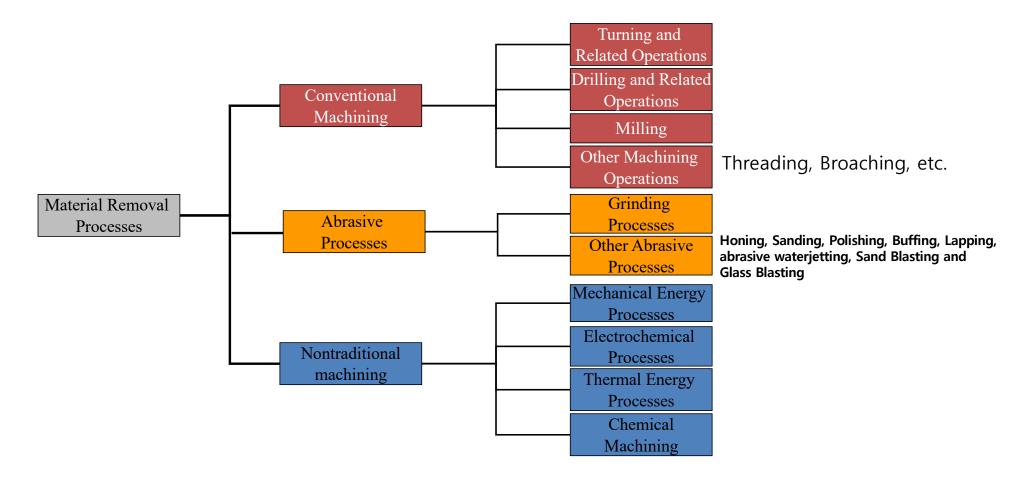
MICHIGAN STATE


Laboratory of Advanced Manufacturing Processes (LAMP@MSU)

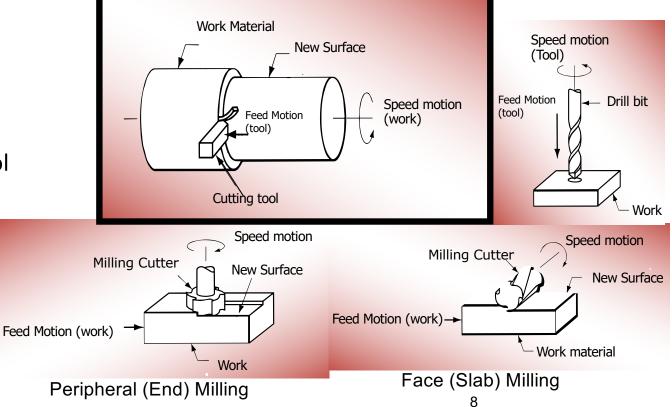
- Advanced Machining
 - Deformation mechanisms (Prof. Guo)
 - Tool wear mechanisms (Prof. Kwon)
 - Enhancement Techniques (MQL and MAM) (Profs. Guo & Kwon)
 - Stability (Chatter) (Prof. Khasawneh)
 - Sensor monitoring (Machining Ti alloys Profs. Khasawneh & Kwon)
 - Magnetic Assisted Finish (Profs. Chung & Kwon)

Additive Manufacturing (3DP)


- Binder Jet Printing (Prof. Kwon)
- Electron Beam Melting (Prof. Kwon)
- Laser Beam Melting (Prof. Chung)
- Directed Energy (Profs. Chung & Sahasrabudhe)
- Hybrid System (Prof. Chung)
- Scalable & Expeditious Additive Manufacturing (SEAM) (Profs. Chung & Kwon)

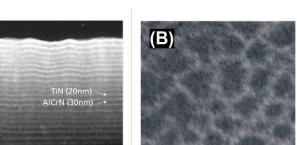


Manufacturing Processes - Classification


Machining: Material Removal Processes

Conventional Machining

- Subtractive Removes undesired sections of workpiece while being efficient
- Types
 - Turning Lathe
 - Drilling Drill press
 - Milling Milling Machine
 - Peripheral & Face
- Work piece & Cutting Tool



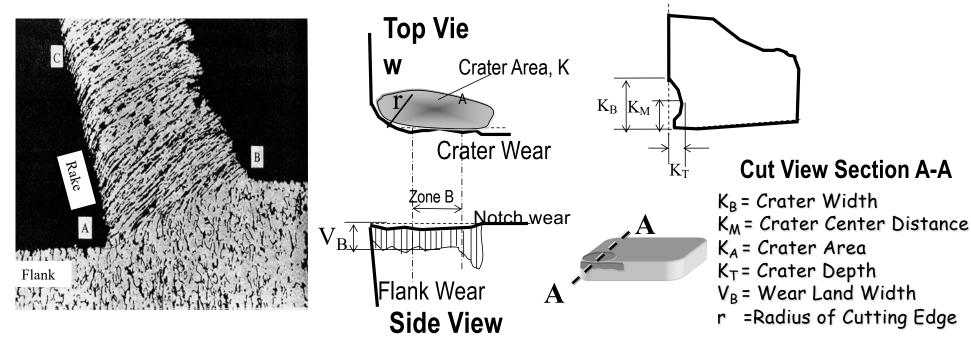
Key Issues in Machining

- Many research works were done on turning.
 - Cutting tools depending on the material being cut (new materials)

(A)

- Improve productivity
- Tool wear to change tools
- Chatter Machine stability
- Monitoring
 - Motor power and current
 - Measuring forces and torques using piezoelectric, strain gage
 - Acoustic emission sensor
 - Audible sound

Nano-composite coating



Tool Wear

Still, an empirical approach to predict tool wear

Taylor's Model : $V^a d^b f^c$ = constant

Cause of Tool Wear (Wear Mechanisms)

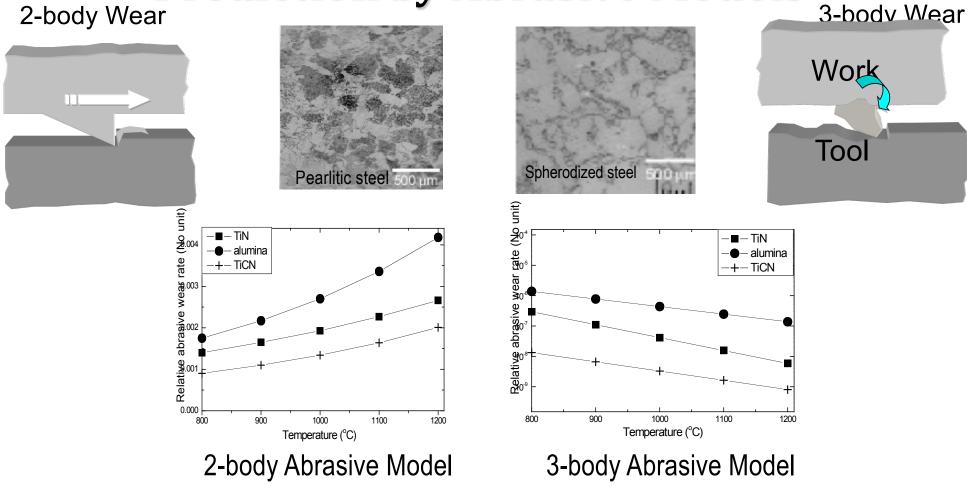
Mechanical wear

• Abrasive wear

- The sliding and rolling of hard second phase on the work/tool materials interface
- Erosion Wear
- Delamination Wear
- Continual loading leads to subsurface cracks pr opagation
- Adhesion (Ti)
- Welding of asperity junctions

Thermochemical wear

• Dissolution Wear

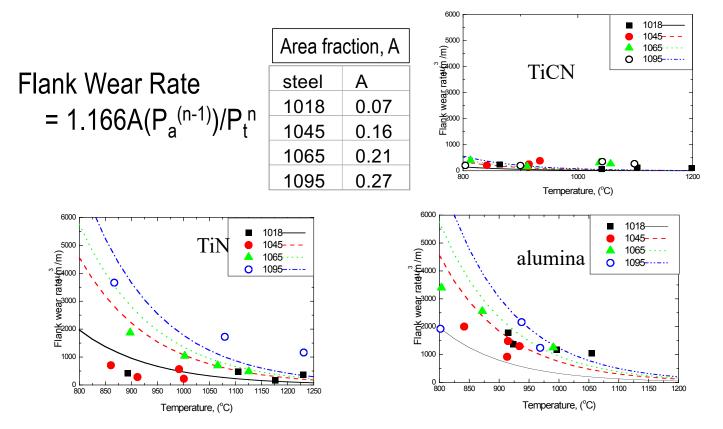

- Thermally activated mechanisms Ato mic transport across the interface
- Diffusion wear
- The component of tool materials can be diffused into chips
- Chemical reaction (Ti)
- Chemical reaction between tool and work material

• Thermomechanical fatigue - Milling

Prediction by Abrasive Models

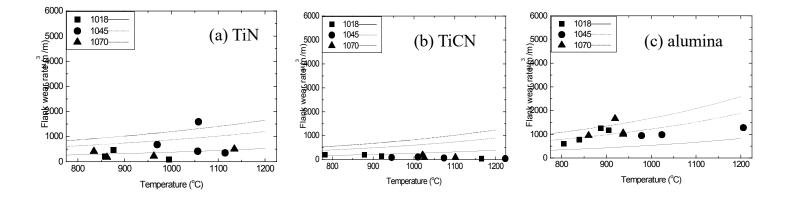
2-body Wear

Compositions of Steels

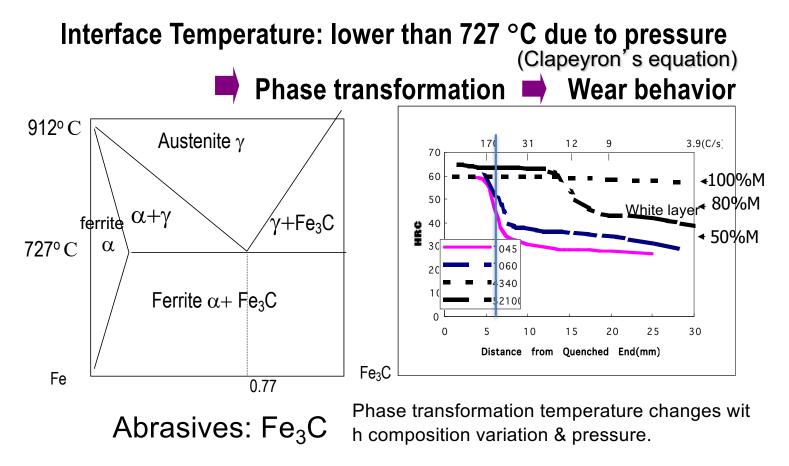

(All in wt%)

	С	Mn	Р	S	Si	Ni	Cr	Мо
1018	0.21	0.70	0.02	0.03	0.21	0.07	0.13	0.02
1045	0.48	0.74	0.01	0.04	0.27	0.05	0.08	0.02
1070	86.0	0.78	0.01	0.02	0.22	0.04	0.17	0.02
1018 (S)	0.16	0.83	0.01	0.03	0.20	0.01	0.08	0.01
1045 (S)	0.48	0.74	0.01	0.04	0.27	0.05	0.08	0.02
1065 (S)	0.64	0.80	0.01	0.01	0.28	0.07	0.15	0.02
1095 (S)	e8.0	1.02	0.02	0.03	0.31	0.15	0.32	0.14
4340	0.41	0.70	0.04	0.04	0.27	1.83	0.80	0.25

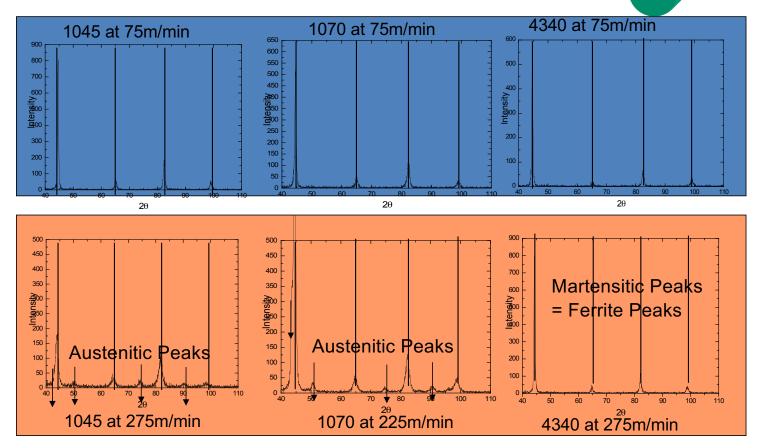
• Round Bar stocks: nominally of diameters between 3" and 6" and length about 2-1/2' initially.



Flank Wear - Spherodized

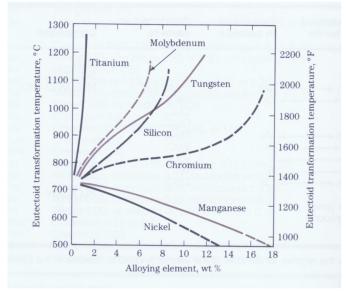

Flank Wear - Pearlitic

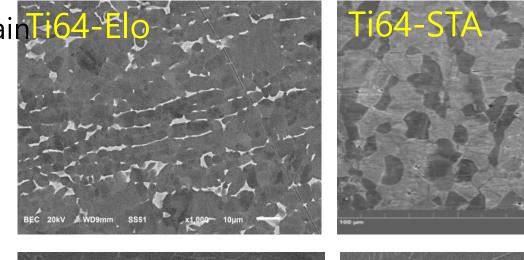
- Problems
 - The Inadequacy of 2-body Abrasive Wear Model
 - TiCN too low wear
 - No cementire effect Phase Transformation


Phase Transformation

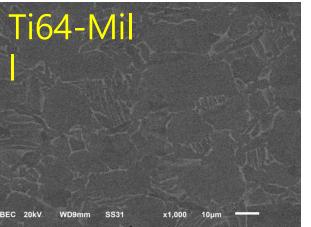
Results of X-ray diffraction

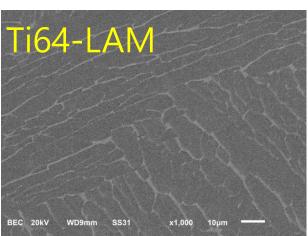
ASSUT T


MICHIGAN STATE


Practical Applications

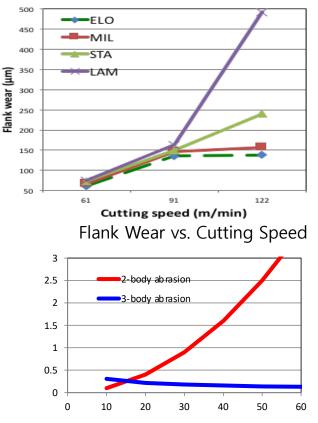
- Phase Transformation
 - High Pressure Decrease the Transformation
 Temperature based on Clayperon's Equation
 - Variations in Tool Life even for the same work material
 - Compositional differences Increase or decrease Friction & Temperature
 - Cutting at higher speeds could improve the machinability for most ferrous materials


Four Microstructures of Ti64s: $\alpha \& \beta$ phases

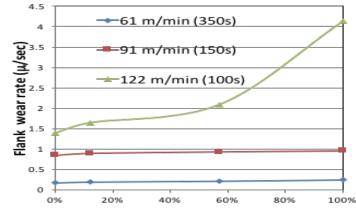

Equiaxed GrainTi64-El (Elongated)

Solution Treated & Aged (STA)

Mill Annealed Ti64-Mil (MIL)



Lamellar


9/17/23

Discussion On Flank Wear

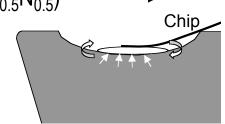
Predictions by 2- & 3-body abrasions (Kwon, 2000)

Flank Wear vs. Lamellar content

Root Cause for flank wear in machining Ti alloys[14]

- 1. The hard direction of HCP clusters (Hard $\alpha\text{-cluster})$
- 2. Lamellar phase
- Flank wear rapidly increased with high cutting speed (122 m/min) with the lamellar content
- Lamellar colonies with the constrained (alternate) α- a nd β-phase exhibiting 2-body abrasion whereas hard α-clusters are not as well constrained among other αclusters exhibiting less 2-body abrasion.

Dissolution/Diffusion Wear Model


The material pair in sliding will dissolve to each other if the free energy of the material pair decreases by the formation of solution. Dissolution wear rate for tertiary coating, $A_xB_yC_z$ (Ti₁C_{0.5}N_{0.5}) (Kramer & Suh, 1980; Kramer & Kwon, 1985)

BMV^{0.5} C_{AxByCz}

B = the dissolution wear coefficient

M =molar volume of the coating material in cm³/mol

V =cutting speed (m/min)

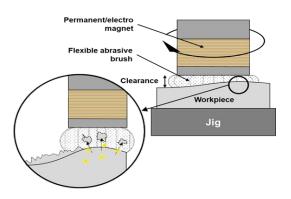
Atomic transport across the interface

Solubility
$$C_{A_xB_yC_z} = \exp\left[\frac{\Delta G_{A_xB_yC_z} - x\Delta G_A^{xs} - y\Delta G_B^{xs} - z\Delta G_C^{xs} - RT(x\ln x + y\ln y + z\ln z)}{(x + y + z)RT}\right]$$

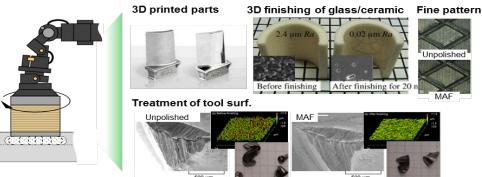
- $\Delta G_{A_x B_y C_z}$ = free energy of formation
 - ΔG_i^{xs} = excess free energy of i component
 - R = gas constant
 - T = temperature (K)

Dissolution Prediction

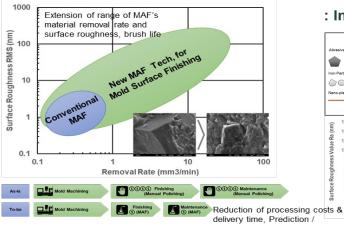
Tool Materials	Relative Wear Rate	Relative Wear Rate	Time for 25 μ m of wear
ZrO ₂	0.0000367	26.053	26 month
Al ₂ O ₃	0.00124	27.051	23 days
TiO ₂	0.00313		21 hr
HfN	0.680		60 min
HfC	1.	1	41 min
TiN	5.92		6.9 min
TiC	12.8		3.2 min
BN	57.0		43 sec
WC	332.	0.824	7.4 sec
Diamond	445	0.227	5.5 sec
	At 1300°C Into Fe	At 1100°C Into Ti	


Surface Finish

- After Grinding, polishing is needed after machining
- Some techniques in machining can also work in grinding
- Polishing is done manually
 - Automation possibility with Magnetic-Assisted Finishing (MAF)

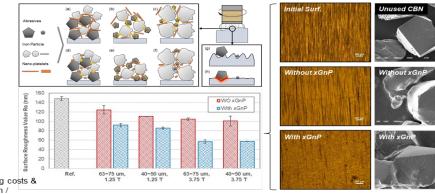

Magnetic-field Assisted Finishing (MAF)

MAF process



Applications

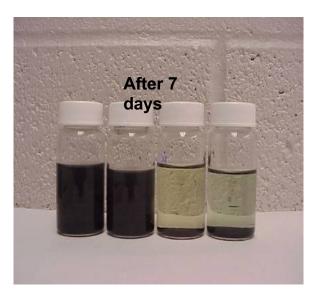
: 3D printed parts, fine pattern, mold surface, etc.

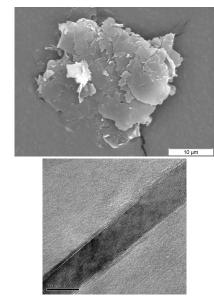


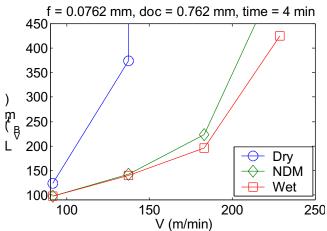
Objective & Benefits

Experiments

: Improvement of workpiece surface roughness and tool life

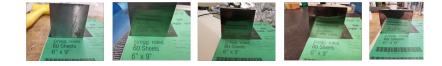



management of finishing quality



Minimum Quantity Lubrication

- MQL Parameters which significantly influence on the effectiveness of MQL machining
 f = 0.0762 mm, doc = 0.762 mm
- x-GNP modified MQL oil



Magnetic Field Assisted Finishing (MAF)

Mold steel (HP4M) 500 450 400 350 299.7225 300 (mu) 250 200 228.445 141_375 150 68.525 100 65.6 50 36.625 20.3 16.15 0 Perpendicular Perpendicular Parallel Parallel Parallel Perpendicular Parallel Perpendicular Parallel Perpendicular MAF by BC 125 µm Reference MAF by BC 40 um MAF by BC 18 um MAF by BC 3 um

Comparison between MAF sample (left) and manually finished sample (right)

Collaborative project (mold finishing) with *LG electronics* (Chung & Kwon)

Additive Manufacturing

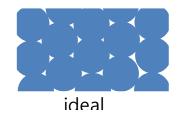
Advantages & Applications

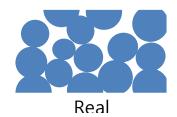
- : "Metal AM reduced the total part count and replaced more complex brazing of multiple components to create a
- lighter, simpler, and more durable product!"
- : Aerospace, Biomedical, Automotive Parts, etc.
- **Process development & Material Integrity**

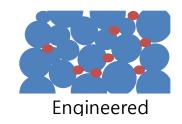
Additive Manufacturing (AM)

- Various AM manufacturing techniques such as selective laser melting (SL M), electron beam melting (EBM), binder jet printing (BJP), directed ener gy deposition (DED), and a new patent-pending scalable and expeditious additive manufacturing (SEAM). Main efforts are
 - Motor Electric steels (BJP with S. Foster) New material Development

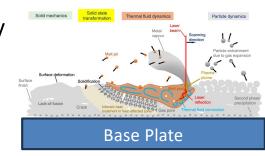
BJP

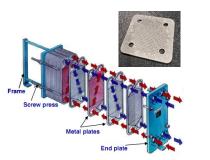

- Introducing multi-functionalities (e.g.: nitinol) (Kwon, Chung, Lee & Baek)
- The development of SEAM using photopolymer to fabricate supercritical CO₂ heat exchanger (Benard, Chung & Kwon),
- The modification of SEAM using hydrogel for ceramic materials (Lin, Chung & Kwon).



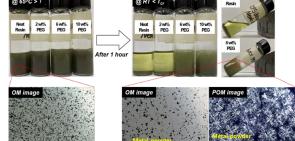


Types of AM Techniques

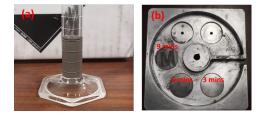

- Powder Feed System Directed Energy Deposition (Laser cladding)
- Powder Bed Fusion
 - near net shape, but distortion, residual stress, heterogeneity
 - Selective Laser Melting (SLM)
 - Electron Beam Melting (EBM)
- Powder Bed
 - Hard to achieve full dense but homogeneous, no residual stress
 - Binder Jet Printing (BJP) sintering additive to form liquid phase
 - Scalable & Expeditious Additive Manufacturing (SEAM)



Scalable & Expeditious Additive Manufacturing (SEAM)



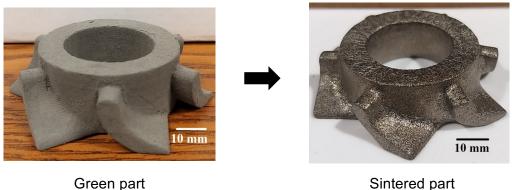
Collaborative project with *Hyundai Motor Company* (Chung & Kwon)



Mixing system Metal powder Roller Powder-resin suspension Print bed

New additive manufacturing process developed at MSU (Chung & Kwon)

NSF CAREER Project:: Development of viscosity tunable photopolymer (Chung)


MTRAC Project: New photopolymer for mula for recycling the material (Chung & Kwon)

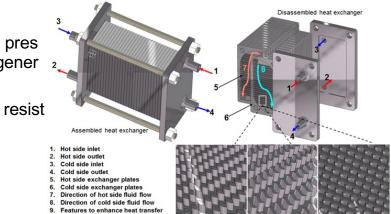
ARPA E Project. Fabrication of he at exchanger assembly (Chung & Kwon w/ Benard)

Few issues: Segregation

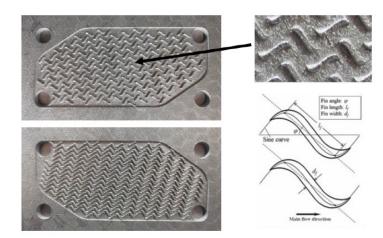
Scalable and Expeditious Additive Manufacturing (SEAM)

- Green turbine with 50 mm diameter and 20 mm height was fabricated
- **Processing parameters**
 - Powder: Stainless steel 420 with size 55/22 µm
 - Suspension: 0.56 powder volume fraction 87.5% wt%
 - Layer thickness: 100 µm
 - Layer curing time: 40 seconds

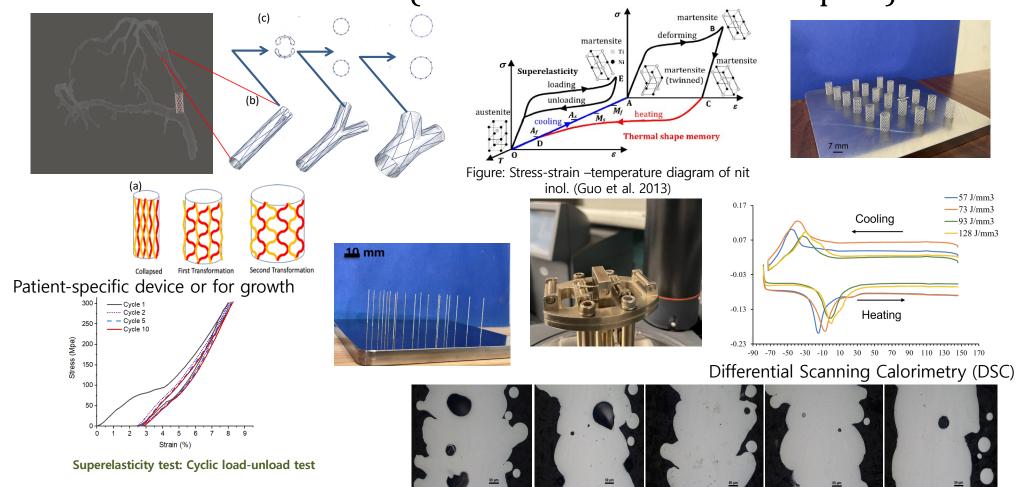
Sintered part


- Binder burn-out & Sintering ٠
- With the new process, three dimensional objects were successfully fabricated on a powder bed ٠ system, and sequentially sintered to a relative density of 99.5%.

Heat-Exchanger Intensification through Enhanced Design


- Technology Summary
 - Transformative high temperature (1100°C), high pres sure (250 Bar) compact HX for sCO2 power gener ² ation systems
 - Super-alloy compositions provide corrosion ance

• Prototype of heat exchange cold and hot plates manufactured by selective laser melting (SLM) process

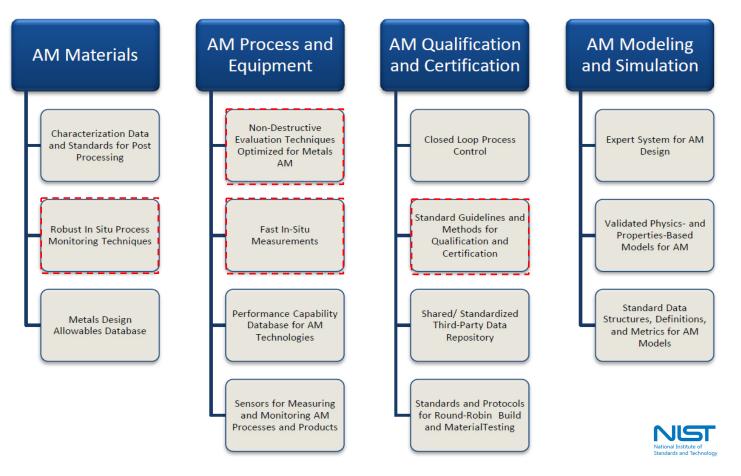


Prox DMP 200 (3D Systems)

Advanced NiTi Stent (Helen Devos Children's Hospital)

Representative AM Technology

European Countries Focus on PBF & The U.S. Companies Focus on DED


Syst	em	Company (Equipment Name)	MFG Country	Process	Build Volume (mm)	Energy Source
Powder Bed Fusion (PBF)		ARCAM (A2)	Sweden (now GE)	EBM	200 x 200 x 350	7 kW electron beam
		EOS (M280)	Germany	DMLS	250 x 250 x 325	200-400 W Yb-fiber laser
	BEAM SOURCE SCANNER	Concept laser cusing (M3)	USA	SLM	300 x 350 x 300	200 W fiber laser
RC	DLLER / RAKE COMPONENT	MTT (SLM 250)	Germany	SLM	250 x 250 x 300	100-400 W Yb-fiber laser
POWDER DELIVERY SYSTEM		Phenix system group (PXL)	France	SLM	250 x 250 x 300	500 W fiber laser
		Renishaw (AM 250)	UK	SLM	245 x 245 x 360	200 or 400 W laser
		Realizer (SLM 250)	Germany	SLM	250 x 250 x 220	100, 200, or 400 W laser
		Matsuura (Lumex Advanced 25)	Japan	SLM	250 x 250 diameter	400 W Yb fiber laser; hybrid additive/subtractive system
		3D Systems (ProX DMP)	USA	SLM	250 x 250 x 330	50-500 W fiber laser
Energy Deposition (DED)	Powder Feed	Optomec (LENS 850-R)	USA	LENS	900 x 1,500 x 900	1 or 2 kW IPG fiber laser
	CARRIER GAS POWDER SUPPLY DEPOSITON HEAD	POM DMD (66R)	USA	DMD	3,200°x3°, 670°x360°	1-5 kW fiber diode or disk laser
		Accufusion laser consolidation	Canada	LC	1,000 x1,000 x 1,000	Nd:YAG laser
		Irepa laser (LF 6000)	France	LD		Laser cladding
		Trumpf	Germany LD 6		600x1,000 long	
		Huffman (HC-205)	USA	LD		CO ₂ laser cladding
	Wire Feed Wire Feed Deposition Layers Substrate	Sciaky (NG1) EBFFF	USA	EBDM	762x483x508	>40 kW @ 60 kV welder
		MER plasma transferred arc select ed FFF	USA	PTAS FFF	610x610x5,182	Plasma transferred arc using two 350A DC power supplies
		Honeywell ion fusion formation	USA	IFF		Plasma arc-based welding

AM in U.S.

Metal AM Standard Roadmap (2013~)

Important Technology and Measurement Challenges for Additive Manufacturing

Concluding remarks

- Manufacturing is not a traditional subject which delves into deep er understanding but integration of engineering solutions from multidisciplinary approaches.
- Each topic is typically immense, requiring concentrated but multi -discipline efforts.