

Technological challenges in scaling up

Biomass fermentation

Food & Bio Global Summit 2023 Aarhus, 27 September 2023 Frederic Liot
HFH Industry Mngt Food
Food & Water division
Alfa Laval Kolding

Our portfolio for the fermentation industry

Alfa Laval approach to fermentation scaleup

MANUFACTURER

- Final product specifications
 & quality criteria
- Fermentation parameters & pilot process description
- Raw materials
- Targeted capacity and production costs

COLLABORATION

ALFA LAVAL

- Pre-identification of main scaleup challenges
- Discussion about best-suited technologies & components
- Validation trials (own test facilities or customer site)
- First approach to capital and operation costs

Biomass and precision fermentation scaleup

MAIN TYPES OF SCALEUP CHALLENGES

TECHNOLOGY

FLUID PROCESSING

HYGIENE

SUSTAINABILITY

PROFITABILITY

CAPITAL COSTS

OPERATION COSTS

Technology challenges of biomass fermentation

FLUID PROCESSING

- TRANSFER
- HEATING & COOLING
- SPARGING
- AGITATION & MIXING
- SEPARATION
- PASTEURIZATION
- CONCENTRATION

HYGIENE

- CIP INSTALLATION AND PROCEDURES
- DISINFECTION
- (STERILIZATION)

SUSTAINABILITY

- WASTE, CO2 FOOTPRINT
- ENERGY OPTIMIZATION
- WATER REUSE

CHALLENGES

- MEDIA PREPARATON
- ATEX INGREDIENTS
- VISCOSITY
- PARTICLES
- HEAT TRANSFER
- O2 DIFFUSION
- FOAMING
- • •

Case story

Scaling up fermented meat substitute from lab to demo production

CUSTOMER REQUEST: SCALE UP FROM 150 L TO 1.5 M3 BATCH SIZE

PRODUCT, PROCESS & SCALING UP IMPACT	
Meat substitute final use	→ focus on production cost
Fungi strain	→ high hygiene but not aseptic
Fast growing strain	→ high O2 requirement and heat release
Foaming during fermentation	→ headspace & anti-foam
Fibrous product	→ fouling risk and CIP issues
Thick consistency at end of fermentation	→ high viscosity during transfer and mixing issues
High solid load 15-20%	→ preferred centrifuge separation

Case story

From closed tank to external loop design

Static multi-purpose pilot closed fermenter

PILOT REACTOR FEATURES

- External cap / heating & cooling
- Mechanical agitation
- Bottom static sparging with Rushton high-shear mixer

SCALING UP IMPACT

- Low heat-exchange efficiency
- Reduced effect for high viscosity at end of fermentation
- High power needed
- High heat dispersion and frigorie use for cooling

Case story

From closed tank to external loop design

ALFA LAVAL PROPOSAL: RETROFIT TANK WITH EXTERNAL LOOP

Case story Solving scaling up challenges

ACTION	BENEFITS
Retrofit of brewery process tank	Reduce capital cost with food-grade components and sanitation procedure
RJM & LeviMag	Low-energy alternative to high-shear mixer / sparger
Positive pump for circulation loop	Low energy, not affected by rising viscosity or particles
Plate Heat exchanger	Low investment, high energy efficiency
Decanter	High capacity, low energy, high recovery yield

Case story Next scaling up focus issues

FOAMING CONTROL

OPTIMIZE COMPONENTS SELECTION

SCALING UP TO PRODUCTION CAPACITY

Every microorganism and product is different

NEW PROJECT = NEW CHALLENGES! TRIALS ARE THE KEY TO SCALING UP

